Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

FOXC1 is required for normal cerebellar development and is a major contributor to chromosome 6p25.3 Dandy-Walker malformation

Abstract

Dandy-Walker malformation (DWM), the most common human cerebellar malformation, has only one characterized associated locus1,2. Here we characterize a second DWM-linked locus on 6p25.3, showing that deletions or duplications encompassing FOXC1 are associated with cerebellar and posterior fossa malformations including cerebellar vermis hypoplasia (CVH), mega-cisterna magna (MCM) and DWM. Foxc1-null mice have embryonic abnormalities of the rhombic lip due to loss of mesenchyme-secreted signaling molecules with subsequent loss of Atoh1 expression in vermis. Foxc1 homozygous hypomorphs have CVH with medial fusion and foliation defects. Human FOXC1 heterozygous mutations are known to affect eye development, causing a spectrum of glaucoma-associated anomalies (Axenfeld-Rieger syndrome, ARS; MIM no. 601631). We report the first brain imaging data from humans with FOXC1 mutations and show that these individuals also have CVH. We conclude that alteration of FOXC1 function alone causes CVH and contributes to MCM and DWM. Our results highlight a previously unrecognized role for mesenchyme-neuroepithelium interactions in the mid-hindbrain during early embryogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Physical map of the 6p25.3 DWM locus.
Figure 2: Brain images of affected individuals within the 6p25.3 cohort.
Figure 3: Morphological cerebellar phenotype of Foxc1−/− embryos.
Figure 4: Loss of Foxc1 from hindbrain mesenchyme disrupts rhombic lip–derived cerebellar cellular populations.
Figure 5: Cerebellar morphology of Foxc1hith/hith mice.

Similar content being viewed by others

References

  1. Millen, K.J. & Gleeson, J.G. Cerebellar development and disease. Curr. Opin. Neurobiol. 18, 12–19 (2008).

    Article  CAS  Google Scholar 

  2. Grinberg, I. et al. Heterozygous deletion of the linked genes ZIC1 and ZIC4 is involved in Dandy-Walker malformation. Nat. Genet. 36, 1053–1055 (2004).

    Article  CAS  Google Scholar 

  3. Parisi, M.A. & Dobyns, W.B. Human malformations of the midbrain and hindbrain: review and proposed classification scheme. Mol. Genet. Metab. 80, 36–53 (2003).

    Article  CAS  Google Scholar 

  4. Patel, S. & Barkovich, A.J. Analysis and classification of cerebellar malformations. AJNR Am. J. Neuroradiol. 23, 1074–1087 (2002).

    PubMed  Google Scholar 

  5. DeScipio, C. et al. Subtelomeric deletions of chromosome 6p: molecular and cytogenetic characterization of three new cases with phenotypic overlap with Ritscher-Schinzel (3C) syndrome. Am. J. Med. Genet. A. 134, 3–11 (2005).

    Article  Google Scholar 

  6. DeScipio, C. et al. Fine-mapping subtelomeric deletions and duplications by comparative genomic hybridization in 42 individuals. Am. J. Med. Genet. A. 146A, 730–739 (2008).

    Article  Google Scholar 

  7. Lin, R.J. et al. Terminal deletion of 6p results in a recognizable phenotype. Am. J. Med. Genet. A. 136, 162–168 (2005).

    Article  Google Scholar 

  8. Maclean, K. et al. Axenfeld-Rieger malformation and distinctive facial features: clues to a recognizable 6p25 microdeletion syndrome. Am. J. Med. Genet. A. 132, 381–385 (2005).

    Article  Google Scholar 

  9. Chanda, B. et al. A novel mechanistic spectrum underlies glaucoma-associated chromosome 6p25 copy number variation. Hum. Mol. Genet. 17, 3446–3458 (2008).

    Article  CAS  Google Scholar 

  10. Kume, T. et al. The forkhead/winged helix gene Mf1 is disrupted in the pleiotropic mouse mutation congenital hydrocephalus. Cell 93, 985–996 (1998).

    Article  CAS  Google Scholar 

  11. Kume, T., Deng, K. & Hogan, B.L. Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract. Development 127, 1387–1395 (2000).

    CAS  PubMed  Google Scholar 

  12. Kume, T., Jiang, H., Topczewska, J.M. & Hogan, B.L. The murine winged helix transcription factors, Foxc1 and Foxc2, are both required for cardiovascular development and somitogenesis. Genes Dev. 15, 2470–2482 (2001).

    Article  CAS  Google Scholar 

  13. Seo, S. et al. The forkhead transcription factors, Foxc1 and Foxc2, are required for arterial specification and lymphatic sprouting during vascular development. Dev. Biol. 294, 458–470 (2006).

    Article  CAS  Google Scholar 

  14. Wilm, B., James, R.G., Schultheiss, T.M. & Hogan, B.L. The forkhead genes, Foxc1 and Foxc2, regulate paraxial versus intermediate mesoderm cell fate. Dev. Biol. 271, 176–189 (2004).

    Article  CAS  Google Scholar 

  15. Zarbalis, K. et al. Cortical dysplasia and skull defects in mice with a Foxc1 allele reveal the role of meningeal differentiation in regulating cortical development. Proc. Natl. Acad. Sci. USA 104, 14002–14007 (2007).

    Article  CAS  Google Scholar 

  16. Chizhikov, V.V. et al. The roof plate regulates cerebellar cell-type specification and proliferation. Development 133, 2793–2804 (2006).

    Article  CAS  Google Scholar 

  17. Wingate, R. Math-Map(ic)s. Neuron 48, 1–4 (2005).

    Article  CAS  Google Scholar 

  18. Alder, J., Lee, K.J., Jessell, T.M. & Hatten, M.E. Generation of cerebellar granule neurons in vivo by transplantation of BMP-treated neural progenitor cells. Nat. Neurosci. 2, 535–540 (1999).

    Article  CAS  Google Scholar 

  19. Hevner, R.F., Hodge, R.D., Daza, R.A. & Englund, C. Transcription factors in glutamatergic neurogenesis: conserved programs in neocortex, cerebellum, and adult hippocampus. Neurosci. Res. 55, 223–233 (2006).

    Article  CAS  Google Scholar 

  20. Ben-Arie, N. et al. Atoh1 is essential for genesis of cerebellar granule neurons. Nature 390, 169–172 (1997).

    Article  CAS  Google Scholar 

  21. Rice, R., Rice, D.P. & Thesleff, I. Foxc1 integrates Fgf and Bmp signalling independently of twist or noggin during calvarial bone development. Dev. Dyn. 233, 847–852 (2005).

    Article  CAS  Google Scholar 

  22. Sommer, P., Napier, H.R., Hogan, B.L. & Kidson, S.H. Identification of Tgf beta1i4 as a downstream target of Foxc1. Dev. Growth Differ. 48, 297–308 (2006).

    Article  CAS  Google Scholar 

  23. Hayashi, H. & Kume, T. Forkhead transcription factors regulate expression of the chemokine receptor CXCR4 in endothelial cells and CXCL12-induced cell migration. Biochem. Biophys. Res. Commun. 367, 584–589 (2008).

    Article  CAS  Google Scholar 

  24. Ma, Q. et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc. Natl. Acad. Sci. USA 95, 9448–9453 (1998).

    Article  CAS  Google Scholar 

  25. Krizhanovsky, V. & Ben-Arie, N. A novel role for the choroid plexus in BMP-mediated inhibition of differentiation of cerebellar neural progenitors. Mech. Dev. 123, 67–75 (2006).

    Article  CAS  Google Scholar 

  26. Qin, L., Wine-Lee, L., Ahn, K.J. & Crenshaw, E.B. III Genetic analyses demonstrate that bone morphogenetic protein signaling is required for embryonic cerebellar development. J. Neurosci. 26, 1896–1905 (2006).

    Article  CAS  Google Scholar 

  27. Mears, A.J. et al. Mutations of the forkhead/winged-helix gene, FKHL7, in patients with Axenfeld-Rieger anomaly. Am. J. Hum. Genet. 63, 1316–1328 (1998).

    Article  CAS  Google Scholar 

  28. Gould, D.B., Mears, A.J., Pearce, W.G. & Walter, M.A. Autosomal dominant Axenfeld-Rieger anomaly maps to 6p25. Am. J. Hum. Genet. 61, 765–768 (1997).

    Article  CAS  Google Scholar 

  29. Nishimura, D.Y. et al. The forkhead transcription factor gene FKHL7 is responsible for glaucoma phenotypes which map to 6p25. Nat. Genet. 19, 140–147 (1998).

    Article  CAS  Google Scholar 

  30. Saleem, R.A., Banerjee-Basu, S., Berry, F.B., Baxevanis, A.D. & Walter, M.A. Analyses of the effects that disease-causing missense mutations have on the structure and function of the winged-helix protein FOXC1. Am. J. Hum. Genet. 68, 627–641 (2001).

    Article  CAS  Google Scholar 

  31. Lehmann, O.J., Sowden, J.C., Carlsson, P., Jordan, T. & Bhattacharya, S.S. Fox's in development and disease. Trends Genet. 19, 339–344 (2003).

    Article  CAS  Google Scholar 

  32. Ormestad, M., Astorga, J. & Carlsson, P. Differences in the embryonic expression patterns of mouse Foxf1 and -2 match their distinct mutant phenotypes. Dev. Dyn. 229, 328–333 (2004).

    Article  CAS  Google Scholar 

  33. Hong, H.K. et al. The winged helix/forkhead transcription factor Foxq1 regulates differentiation of hair in satin mice. Genesis 29, 163–171 (2001).

    Article  CAS  Google Scholar 

  34. Hayashi, H. & Kume, T. Foxc transcription factors directly regulate Dll4 and Hey2 expression by interacting with the VEGF-Notch signaling pathways in endothelial cells. PLoS One 3, e2401 (2008).

    Article  Google Scholar 

  35. Philip, N. et al. Mutations in the oligophrenin-1 gene (OPHN1) cause X linked congenital cerebellar hypoplasia. J. Med. Genet. 40, 441–446 (2003).

    Article  CAS  Google Scholar 

  36. Najm, J. et al. Mutations of CASK cause an X-linked brain malformation phenotype with microcephaly and hypoplasia of the brainstem and cerebellum. Nat. Genet. 40, 1065–1067 (2008).

    Article  CAS  Google Scholar 

  37. Selzer, Y. et al. Effect of local environment on molecular conduction: isolated molecule versus self-assembled monolayer. Nano Lett. 5, 61–65 (2005).

    Article  CAS  Google Scholar 

  38. Chizhikov, V.V. & Millen, K.J. Control of roof plate development and signaling by Lmx1b in the caudal vertebrate CNS. J. Neurosci. 24, 5694–5703 (2004).

    Article  CAS  Google Scholar 

  39. Chen, A.J. et al. The dual specificity JKAP specifically activates the c-Jun N-terminal kinase pathway. J. Biol. Chem. 277, 36592–36601 (2002).

    Article  CAS  Google Scholar 

  40. Gray, P.A. et al. Mouse brain organization revealed through direct genome-scale TF expression analysis. Science 306, 2255–2257 (2004).

    CAS  Google Scholar 

  41. Hang, H., Zhang, Y., Dunbrack, R.L. Jr ., Wang, C. & Lieberman, H.B. Identification and characterization of a paralog of human cell cycle checkpoint gene HUS1. Genomics 79, 487–492 (2002).

    Article  CAS  Google Scholar 

  42. Wang, T. et al. Forkhead transcription factor Foxf2 (LUN)-deficient mice exhibit abnormal development of secondary palate. Dev. Biol. 259, 83–94 (2003).

    Article  CAS  Google Scholar 

  43. Sasaki, H. & Hogan, B.L. Differential expression of multiple fork head related genes during gastrulation and axial pattern formation in the mouse embryo. Development 118, 47–59 (1993).

    CAS  PubMed  Google Scholar 

  44. Mittrücker, H.W. et al. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science 275, 540–543 (1997).

    Article  Google Scholar 

  45. Panchision, D.M. et al. Sequential actions of BMP receptors control neural precursor cell production and fate. Genes Dev. 15, 2094–2110 (2001).

    Article  CAS  Google Scholar 

  46. Chizhikov, V.V. & Millen, K.J. Control of roof plate formation by Lmx1a in the developing spinal cord. Development 131, 2693–2705 (2004).

    Article  CAS  Google Scholar 

  47. Lee, K.J., Mendelsohn, M. & Jessell, T.M. Neuronal patterning by BMPs: a requirement for GDF7 in the generation of a discrete class of commissural interneurons in the mouse spinal cord. Genes Dev. 12, 3394–3407 (1998).

    Article  CAS  Google Scholar 

  48. Englund, C. et al. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J. Neurosci. 25, 247–251 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the affected individuals and their families for their participation; C. Beaulieu for assistance with MRI; T. Kume for providing Foxc1+/− mice; S. Pleasure and A. Peterson for Foxc1+/hith mice; H. Sing, H. Hang, R. Arkell, N. Miura, J. Belmont, Q. Ma, B. Hogan, W. Duan, J. Johnson, M.E. Hatten, R. Miller, E. Grove, M. German, T. Jessell and R. Hevner for providing mutant brains, in situ probes or antibodies; and M. Walter for helpful discussions. This work was supported by the following awards: an Autism Speaks predoctoral fellowship to K.A.A., Alberta Heritage for Medical Research and Canadian Institute for Health Research grants to O.J.L., US National Institutes of Health grants KO8-NS48174-01A to A.G.B., R01-NS050375 to W.B.D. and R01-NS050386 to K.J.M., and March of Dimes Birth Defects Foundation award 6-FYO7-334 to K.J.M.

Author information

Authors and Affiliations

Authors

Contributions

K.A.A. contributed to study design and performed most human and mouse studies and manuscript writing. O.J.L. provided brain scans for multiple individuals and contributed to data analysis and manuscript writing. V.V.C. contributed to mouse immunohistochemical studies. L.H., A.G.B. and L.C.A. provided key phenotype data on one or more individuals. I.D.K. provided much of the initial ideas and data used to start this project, as well as new phenotype data on one subject. W.B.D. contributed to the initial design of the study, patient ascertainment, clinical evaluation including interpretation of all brain scans, delineation of the phenotype and manuscript writing. K.J.M. designed the study, supervised the mouse studies and contributed to manuscript writing.

Corresponding author

Correspondence to Kathleen J Millen.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Figures 1–7 and Supplementary Tables 1–3 (PDF 1677 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aldinger, K., Lehmann, O., Hudgins, L. et al. FOXC1 is required for normal cerebellar development and is a major contributor to chromosome 6p25.3 Dandy-Walker malformation. Nat Genet 41, 1037–1042 (2009). https://doi.org/10.1038/ng.422

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.422

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing