Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells

Abstract

The reprogramming of somatic cells into induced pluripotent stem (iPS) cells upon overexpression of the transcription factors Oct4, Sox2, Klf4 and cMyc is inefficient. It has been assumed that the somatic differentiation state provides a barrier for efficient reprogramming; however, direct evidence for this notion is lacking. Here, we tested the potential of mouse hematopoietic cells at different stages of differentiation to be reprogrammed into iPS cells. We show that hematopoietic stem and progenitor cells give rise to iPS cells up to 300 times more efficiently than terminally differentiated B and T cells do, yielding reprogramming efficiencies of up to 28%. Our data provide evidence that the differentiation stage of the starting cell has a critical influence on the efficiency of reprogramming into iPS cells. Moreover, we identify hematopoietic progenitors as an attractive cell type for applications of iPS cell technology in research and therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Development of a transgenic system for inducible expression of Oct4, Sox2, Klf4 and cMyc in the mouse hematopoietic system.
Figure 2: Generation and characterization of iPS cells derived from mature B and T lymphocytes by expression of the four transcription factors (Oct4, Sox2, Klf4 and cMyc) using secondary system.
Figure 3: Monoclonal immune system in Rag2−/− chimeras produced with lymphocyte-derived iPS cells.
Figure 4: Potential of hematopoietic cell types to be reprogrammed into iPS cells.
Figure 5: Effect of hematopoietic cell proliferation rate on reprogramming potential.
Figure 6: Transgene requirement and reprogramming kinetics in progenitors and mature cells.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Maherali, N. et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1, 55–70 (2007).

    Article  CAS  Google Scholar 

  2. Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317 (2007).

    Article  CAS  Google Scholar 

  3. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  Google Scholar 

  4. Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324 (2007).

    Article  CAS  Google Scholar 

  5. Liao, J. et al. Generation of induced pluripotent stem cell lines from adult rat cells. Cell Stem Cell 4, 11–15 (2009).

    Article  CAS  Google Scholar 

  6. Li, W. et al. Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell 4, 16–19 (2009).

    Article  Google Scholar 

  7. Liu, H. et al. Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell 3, 587–590 (2008).

    Article  CAS  Google Scholar 

  8. Lowry, W.E. et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc. Natl. Acad. Sci. USA 105, 2883–2888 (2008).

    Article  CAS  Google Scholar 

  9. Park, I.H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146 (2008).

    Article  CAS  Google Scholar 

  10. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  Google Scholar 

  11. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  Google Scholar 

  12. Hochedlinger, K. & Plath, K. Epigenetic reprogramming and induced pluripotency. Development 136, 509–523 (2009).

    Article  CAS  Google Scholar 

  13. Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T. & Yamanaka, S. Generation of mouse induced pluripotent stem cells without viral vectors. Science 322, 949–953 (2008).

    Article  CAS  Google Scholar 

  14. Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G. & Hochedlinger, K. Induced pluripotent stem cells generated without viral integration. Science 322, 945–949 (2008).

    Article  CAS  Google Scholar 

  15. Zhou, H. et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4, 381–384 (2009).

    Article  CAS  Google Scholar 

  16. Hockemeyer, D. et al. A drug-inducible system for direct reprogramming of human somatic cells to pluripotency. Cell Stem Cell 3, 346–353 (2008).

    Article  CAS  Google Scholar 

  17. Maherali, N. et al. A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell 3, 340–345 (2008).

    Article  CAS  Google Scholar 

  18. Wernig, M. et al. A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nat. Biotechnol. 26, 916–924 (2008).

    Article  CAS  Google Scholar 

  19. Hochedlinger, K. & Jaenisch, R. Nuclear reprogramming and pluripotency. Nature 441, 1061–1067 (2006).

    Article  CAS  Google Scholar 

  20. Huangfu, D. et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat. Biotechnol. 26, 795–797 (2008).

    Article  CAS  Google Scholar 

  21. Huangfu, D. et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat. Biotechnol. 26, 1269–1275 (2008).

    Article  CAS  Google Scholar 

  22. Mikkelsen, T.S. et al. Dissecting direct reprogramming through integrative genomic analysis. Nature 454, 49–55 (2008).

    Article  CAS  Google Scholar 

  23. Shi, Y. et al. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3, 568–574 (2008).

    Article  CAS  Google Scholar 

  24. Ellis, P. et al. SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev. Neurosci. 26, 148–165 (2004).

    Article  CAS  Google Scholar 

  25. Galan-Caridad, J.M. et al. Zfx controls the self-renewal of embryonic and hematopoietic stem cells. Cell 129, 345–357 (2007).

    Article  CAS  Google Scholar 

  26. Blelloch, R. et al. Reprogramming efficiency following somatic cell nuclear transfer is influenced by the differentiation and methylation state of the donor nucleus. Stem Cells 24, 2007–2013 (2006).

    Article  CAS  Google Scholar 

  27. Li, J., Greco, V., Guasch, G., Fuchs, E. & Mombaerts, P. Mice cloned from skin cells. Proc. Natl. Acad. Sci. USA 104, 2738–2743 (2007).

    Article  CAS  Google Scholar 

  28. Inoue, K. et al. Inefficient reprogramming of the hematopoietic stem cell genome following nuclear transfer. J. Cell Sci. 119, 1985–1991 (2006).

    Article  CAS  Google Scholar 

  29. Sung, L.Y. et al. Differentiated cells are more efficient than adult stem cells for cloning by somatic cell nuclear transfer. Nat. Genet. 38, 1323–1328 (2006).

    Article  CAS  Google Scholar 

  30. Hochedlinger, K. & Jaenisch, R. On the cloning of animals from terminally differentiated cells. Nat. Genet. 39, 136–137 (2007).

    Article  CAS  Google Scholar 

  31. Kim, J.B. et al. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454, 646–650 (2008).

    Article  CAS  Google Scholar 

  32. Eminli, S., Utikal, J., Arnold, K., Jaenisch, R. & Hochedlinger, K. Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression. Stem Cells 26, 2467–2474 (2008).

    Article  CAS  Google Scholar 

  33. Shi, Y. et al. A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2, 525–528 (2008).

    Article  CAS  Google Scholar 

  34. Hanna, J. et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133, 250–264 (2008).

    Article  CAS  Google Scholar 

  35. Stadtfeld, M., Brennand, K. & Hochedlinger, K. Reprogramming of pancreatic β cells into induced pluripotent stem cells. Curr. Biol. 18, 890–894 (2008).

    Article  CAS  Google Scholar 

  36. Lengner, C.J. et al. Oct4 expression is not required for mouse somatic stem cell self-renewal. Cell Stem Cell 1, 403–415 (2007).

    Article  CAS  Google Scholar 

  37. Hochedlinger, K., Yamada, Y., Beard, C. & Jaenisch, R. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121, 465–477 (2005).

    Article  CAS  Google Scholar 

  38. Stadtfeld, M., Maherali, N., Breault, D.T. & Hochedlinger, K. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2, 230–240 (2008).

    Article  CAS  Google Scholar 

  39. Ramsdell, F., Zúñiga-Pflucker, J.C. & Takahama, Y. In vitro systems for the study of T cell development: fetal thymus organ culture and OP9-DL1 cell coculture. Curr. Protoc. Immunol. 71, Unit 3.18 (2006).

  40. Sommer, C.A. et al. iPS cell generation using a single lentiviral stem cell cassette. Stem Cells 27, 543–549 (2008).

    Article  Google Scholar 

  41. Hochedlinger, K. & Jaenisch, R. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 415, 1035–1038 (2002).

    Article  CAS  Google Scholar 

  42. Chen, J., Lansford, R., Stewart, V., Young, F. & Alt, F.W. RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development. Proc. Natl. Acad. Sci. USA 90, 4528–4532 (1993).

    Article  CAS  Google Scholar 

  43. Kiel, M.J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    Article  CAS  Google Scholar 

  44. Foudi, A. et al. Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells. Nat. Biotechnol. 27, 84–90 (2009).

    Article  CAS  Google Scholar 

  45. Jaenisch, R. & Young, R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132, 567–582 (2008).

    Article  CAS  Google Scholar 

  46. Sitnicka, E. et al. The effect of thrombopoietin on the proliferation and differentiation of murine hematopoietic stem cells. Blood 87, 4998–5005 (1996).

    CAS  PubMed  Google Scholar 

  47. Aoi, T. et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321, 699–702 (2008).

    Article  CAS  Google Scholar 

  48. Hock, H. et al. Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation. Immunity 18, 109–120 (2003).

    Article  CAS  Google Scholar 

  49. Whitehurst, C.E., Chattopadhyay, S. & Chen, J. Control of V(D)J recombinational accessibility of the Dβ1 gene segment at the TCRβ locus by a germline promoter. Immunity 10, 313–322 (1999).

    Article  CAS  Google Scholar 

  50. Xie, H., Ye, M., Feng, R. & Graf, T. Stepwise reprogramming of B cells into macrophages. Cell 117, 663–676 (2004).

    Article  CAS  Google Scholar 

  51. Cowan, C.A. et al. Derivation of embryonic stem-cell lines from human blastocysts. N. Engl. J. Med. 350, 1353–1356 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Xie for sharing the C/EBPα overexpression vector, R. Mostoslavsky for critical reading of the manuscript, L. Prickett and K. Folz-Donahue for help with FACS and P. Follett for help with blastocyst injections. A.F. was the recipient of the Lady Tata Memorial Trust Award. A Postdoctoral Fellowship from Schering Foundation supported M.S. This work was supported by a contribution from the Ellison Foundation to Massachusetts General Hospital start-up funds for H.H., by an American Society of Hematology (ASH) Scholar Award to H.H. and by the Harvard Stem Cell Institute. Support to K.H. came from the US National Institutes of Health (NIH) Director's Innovator Award, the Harvard Stem Cell Institute, the Kimmel Foundation and the V Foundation.

Author information

Authors and Affiliations

Authors

Contributions

S.E., A.F., H.H. and K.H. conceived and designed the study. S.E., M.S., N.M. and G.M. provided study materials. S.E., A.F., M.S. and T.A. collected and assembled the data. H.H. and K.H. provided financial support. K.H. provided administrative support. S.E., A.F., H.H. and K.H. analyzed and interpreted the data and wrote the paper.

Corresponding authors

Correspondence to Hanno Hock or Konrad Hochedlinger.

Ethics declarations

Competing interests

S.E. and K.H. have filed a patent with the US Patent Office based on the findings of this work.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Table 1 (PDF 10135 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eminli, S., Foudi, A., Stadtfeld, M. et al. Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat Genet 41, 968–976 (2009). https://doi.org/10.1038/ng.428

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.428

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing