Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

New common variants affecting susceptibility to basal cell carcinoma

Abstract

In a follow-up to our previously reported genome-wide association study of cutaneous basal cell carcinoma (BCC)1, we describe here several new susceptibility variants. SNP rs11170164, encoding a G138E substitution in the keratin 5 (KRT5) gene, affects risk of BCC (OR = 1.35, P = 2.1 × 10−9). A variant at 9p21 near CDKN2A and CDKN2B also confers susceptibility to BCC (rs2151280[C]; OR = 1.19, P = 6.9 × 10−9), as does rs157935[T] at 7q32 near the imprinted gene KLF14 (OR = 1.23, P = 5.7 × 10−10). The effect of rs157935[T] is dependent on the parental origin of the risk allele. None of these variants were found to be associated with melanoma or fair-pigmentation traits. A melanoma- and pigmentation-associated variant in the SLC45A2 gene, L374F, is associated with risk of both BCC and squamous cell carcinoma. Finally, we report conclusive evidence that rs401681[C] in the TERT-CLPTM1L locus confers susceptibility to BCC but protects against melanoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic view of the LD structure of the 9p21 CDKN2A/B region, locations of relevant genes and genome-wide association data for BCC and coronary artery disease (CAD).

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Stacey, S.N. et al. Common variants on 1p36 and 1q42 are associated with cutaneous basal cell carcinoma but not with melanoma or pigmentation traits. Nat. Genet. 40, 1313–1318 (2008).

    Article  CAS  Google Scholar 

  2. Epstein, E.H. Basal cell carcinomas: attack of the hedgehog. Nat. Rev. Cancer 8, 743–754 (2008).

    Article  CAS  Google Scholar 

  3. Gudbjartsson, D.F. et al. ASIP and TYR pigmentation variants associate with cutaneous melanoma and basal cell carcinoma. Nat. Genet. 40, 886–891 (2008).

    Article  CAS  Google Scholar 

  4. Rafnar, T. et al. Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat. Genet. 41, 221–227 (2009).

    Article  CAS  Google Scholar 

  5. Guedj, M. et al. Variants of the MATP/SLC45A2 gene are protective for melanoma in the French population. Hum. Mutat. 29, 1154–1160 (2008).

    Article  CAS  Google Scholar 

  6. Fernandez, L.P. et al. SLC45A2: a novel malignant melanoma-associated gene. Hum. Mutat. 29, 1161–1167 (2008).

    Article  CAS  Google Scholar 

  7. Moll, R., Divo, M. & Langbein, L. The human keratins: biology and pathology. Histochem. Cell Biol. 129, 705–733 (2008).

    Article  CAS  Google Scholar 

  8. Sulem, P. et al. Two newly identified genetic determinants of pigmentation in Europeans. Nat. Genet. 40, 835–837 (2008).

    Article  CAS  Google Scholar 

  9. Sulem, P. et al. Genetic determinants of hair, eye and skin pigmentation in Europeans. Nat. Genet. 39, 1443–1452 (2007).

    Article  CAS  Google Scholar 

  10. Uitto, J., Richard, G. & McGrath, J.A. Diseases of epidermal keratins and their linker proteins. Exp. Cell Res. 313, 1995–2009 (2007).

    Article  CAS  Google Scholar 

  11. Chan, Y.M., Yu, Q.C., Fine, J.D. & Fuchs, E. The genetic basis of Weber-Cockayne epidermolysis bullosa simplex. Proc. Natl. Acad. Sci. USA 90, 7414–7418 (1993).

    Article  CAS  Google Scholar 

  12. Kowalewski, C. et al. A novel autosomal partially dominant mutation designated G476D in the keratin 5 gene causing epidermolysis bullosa simplex Weber-Cockayne type: a family study with a genetic twist. Int. J. Mol. Med. 20, 75–78 (2007).

    CAS  PubMed  Google Scholar 

  13. Shurman, D. et al. Epidermolysis Bullosa Simplex with mottled pigmentation: mutation analysis in the first reported Hispanic pedigree with the largest single generation of affected individuals to date. Eur. J. Dermatol. 16, 132–135 (2006).

    CAS  PubMed  Google Scholar 

  14. Kim, W.Y. & Sharpless, N.E. The regulation of INK4/ARF in cancer and aging. Cell 127, 265–275 (2006).

    Article  CAS  Google Scholar 

  15. Pasmant, E. et al. Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Res. 67, 3963–3969 (2007).

    Article  CAS  Google Scholar 

  16. Lin, J., Hocker, T.L., Singh, M. & Tsao, H. Genetics of melanoma predisposition. Br. J. Dermatol. 159, 286–291 (2008).

    Article  CAS  Google Scholar 

  17. Helgadottir, A. et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316, 1491–1493 (2007).

    Article  CAS  Google Scholar 

  18. Saxena, R. et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316, 1331–1336 (2007).

    Article  CAS  Google Scholar 

  19. Scott, L.J. et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316, 1341–1345 (2007).

    Article  CAS  Google Scholar 

  20. Zeggini, E. et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316, 1336–1341 (2007).

    Article  CAS  Google Scholar 

  21. Steinthorsdottir, V. et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat. Genet. 39, 770–775 (2007).

    Article  CAS  Google Scholar 

  22. Mishmar, D. et al. Molecular characterization of a common fragile site (FRA7H) on human chromosome 7 by the cloning of a simian virus 40 integration site. Proc. Natl. Acad. Sci. USA 95, 8141–8146 (1998).

    Article  CAS  Google Scholar 

  23. Parker-Katiraee, L. et al. Identification of the imprinted KLF14 transcription factor undergoing human-specific accelerated evolution. PLoS Genet. 3, e65 (2007).

    Article  Google Scholar 

  24. Kong, A. et al. Detection of sharing by descent, long-range phasing and haplotype imputation. Nat. Genet. 40, 1068–1075 (2008).

    Article  CAS  Google Scholar 

  25. Fabbri, M. et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc. Natl. Acad. Sci. USA 104, 15805–15810 (2007).

    Article  CAS  Google Scholar 

  26. Graf, J., Hodgson, R. & van Daal, A. Single nucleotide polymorphisms in the MATP gene are associated with normal human pigmentation variation. Hum. Mutat. 25, 278–284 (2005).

    Article  CAS  Google Scholar 

  27. Han, J. et al. A prospective study of telomere length and the risk of skin cancer. J. Invest. Dermatol. 129, 415–421 (2008).

    Article  Google Scholar 

  28. Bataille, V. et al. Nevus size and number are associated with telomere length and represent potential markers of a decreased senescence in vivo. Cancer Epidemiol. Biomarkers Prev. 16, 1499–1502 (2007).

    Article  CAS  Google Scholar 

  29. Higgins, J.P. & Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558 (2002).

    Article  Google Scholar 

  30. Szeverenyi, I. et al. The Human Intermediate Filament Database: comprehensive information on a gene family involved in many human diseases. Hum. Mutat. 29, 351–360 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G.H. Olafsdottir and L. Tryggvadottir of the Icelandic Cancer Registry for assistance with the ascertainment of affected individuals, S. Sveinsdottir for assistance with subject recruitment, and H. Sigurdsson for assistance with the figures. We are grateful to I. Saaf for permission to reproduce a section of the Human Intermediate Filament Database in Supplementary Figure 1. This study was supported in part by the Jubilaumsfonds of the Austrian National Bank (project numbers 11946 and 12161), the Swedish Cancer Society, the Radiumhemmet Research Funds and the Swedish Research Council, the US National Institute of Environmental Health Sciences (T32E007155), the US National Institutes of Health (R01CA082354 and R01CA57494), and a Research Investment Grant of the Radboud University Nijmegen Medical Centre.

Author information

Authors and Affiliations

Authors

Contributions

The study was designed and results were interpreted by S.N.S., P.S., J.R.G., T.R., A.K., J.H.O., U.T. and K.S. Patient ascertainment and recruitment was organized and carried out by S.N.S., B. Sigurgeirsson, K.R.B., K.T., R.R., D.S., K.H., P.R., E.G., K. Koppova, R.B.-E., V. Soriano, P.J., B. Saez, Y.G., V.F., C.C., M.G., V.H., A.L., J.J.B., M.M.v.R., K.K.H.A., E.d.V., M.S., M.G.D.M., A.M., J.W., P.H., H.P., J.G., S.G., H.H., V. Steinthorsdottir, K. Kristjansson, G.B., I.O., L.R., M.R., L.A.K., J.H., E.N., J.I.M., R.K., M.R.K., H.H.N., J.H.O. and U.T. Biological material collection and handling was supervised by S.N.S., D.S., P.R., E.G., K. Koppova, B. Saez, V.H., A.L., K.K.H.A., J.S., H.B., I.O., M.R., M.R.K., H.H.N. and U.T. Genotyping was supervised by S.N.S., M.J., A.S., J.G., D.N.M., S.G., H.H., V. Steinthorsdottir, T.B., T.R. and U.T. Statistical analysis was carried out by P.S., G.T., D.F.G., M.L.F. and A.K. Bioinformatic analysis was carried out by S.N.S., S.A.G. and G.M. Authors S.N.S., P.S., A.K. and K.S. drafted the manuscript. All authors contributed to the final version of the paper. Principal collaborators for the case-control population samples were J.H.O. (Iceland), H.H.N. and M.R.K. (USA), R.K. (Eastern Europe), J.I.M. and E.N. (Spain), J.H. (Sweden), L.A.K. (The Netherlands), M.R. (Italy) and I.O. (Austria).

Corresponding authors

Correspondence to Simon N Stacey or Kari Stefansson.

Ethics declarations

Competing interests

Authors whose affiliations are listed as deCODE Genetics are shareholders and/or employees of deCODE Genetics, a biotechnology company. deCODE Genetics intends to incorporate the variants described in this paper into its genetic testing services.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–8 and Supplementary Figure 1 (PDF 1739 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stacey, S., Sulem, P., Masson, G. et al. New common variants affecting susceptibility to basal cell carcinoma. Nat Genet 41, 909–914 (2009). https://doi.org/10.1038/ng.412

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.412

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing