Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling

Abstract

Homozygosity for the G allele of rs6983267 at 8q24 increases colorectal cancer (CRC) risk 1.5 fold. We report here that the risk allele G shows copy number increase during CRC development. Our computer algorithm, Enhancer Element Locator (EEL), identified an enhancer element that contains rs6983267. The element drove expression of a reporter gene in a pattern that is consistent with regulation by the key CRC pathway Wnt. rs6983267 affects a binding site for the Wnt-regulated transcription factor TCF4, with the risk allele G showing stronger binding in vitro and in vivo. Genome-wide ChIP assay revealed the element as the strongest TCF4 binding site within 1 Mb of MYC. An unambiguous correlation between rs6983267 genotype and MYC expression was not detected, and additional work is required to scrutinize all possible targets of the enhancer. Our work provides evidence that the common CRC predisposition associated with 8q24 arises from enhanced responsiveness to Wnt signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Copy number analysis in CRCs using SNP arrays.
Figure 2: rs6983267 maps to a TCF4 site at a conserved regulatory element.
Figure 3: TCF4 and β-catenin occupancy at MYC-335 in CRC cells.
Figure 4: Verification of the MYC-335 enhancer element in transgenic mouse embryos.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Couzin, J. & Kaiser, J. Genome-wide association. Closing the net on common disease genes. Science 316, 820–822 (2007).

    Article  CAS  Google Scholar 

  2. Easton, D.F. & Eeles, R.A. Genome-wide association studies in cancer. Hum. Mol. Genet. 17, R109–R115 (2008).

    Article  CAS  Google Scholar 

  3. Tomlinson, I. et al. A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat. Genet. 39, 984–988 (2007).

    Article  CAS  Google Scholar 

  4. Zanke, B.W. et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nat. Genet. 39, 989–994 (2007).

    Article  CAS  Google Scholar 

  5. Haiman, C.A. et al. A common genetic risk factor for colorectal and prostate cancer. Nat. Genet. 39, 954–956 (2007).

    Article  CAS  Google Scholar 

  6. Yeager, M. et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat. Genet. 39, 645–649 (2007).

    Article  CAS  Google Scholar 

  7. Zheng, S.L. et al. Cumulative association of five genetic variants with prostate cancer. N. Engl. J. Med. 358, 910–919 (2008).

    Article  CAS  Google Scholar 

  8. Gruber, S.B. et al. Genetic variation in 8q24 associated with risk of colorectal cancer. Cancer Biol. Ther. 6, 1143–1147 (2007).

    Article  CAS  Google Scholar 

  9. Poynter, J.N. et al. Variants on 9p24 and 8q24 are associated with risk of colorectal cancer: results from the Colon Cancer Family Registry. Cancer Res. 67, 11128–11132 (2007).

    Article  CAS  Google Scholar 

  10. Tuupanen, S. et al. Allelic imbalance at rs6983267 suggests selection of the risk allele in somatic colorectal tumor evolution. Cancer Res. 68, 14–17 (2008).

    Article  CAS  Google Scholar 

  11. Li, L. et al. A common 8q24 variant and the risk of colon cancer: a population-based case-control study. Cancer Epidemiol. Biomarkers Prev. 17, 339–342 (2008).

    Article  Google Scholar 

  12. Schafmayer, C. et al. Investigation of the colorectal cancer susceptibility region on chromosome 8q24.21 in a large German case-control sample. Int. J. Cancer 124, 75–80 (2009).

    Article  CAS  Google Scholar 

  13. Berndt, S.I. et al. Pooled analysis of genetic variation at chromosome 8q24 and colorectal neoplasia risk. Hum. Mol. Genet. 17, 2665–2672 (2008).

    Article  CAS  Google Scholar 

  14. Yeager, M. et al. Comprehensive resequence analysis of a 136 kb region of human chromosome 8q24 associated with prostate and colon cancers. Hum. Genet. 124, 161–170 (2008).

    Article  CAS  Google Scholar 

  15. He, T.C. et al. Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512 (1998).

    Article  CAS  Google Scholar 

  16. Bienz, M. & Clevers, H. Linking colorectal cancer to Wnt signaling. Cell 103, 311–320 (2000).

    Article  CAS  Google Scholar 

  17. Tenesa, A. et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat. Genet. 40, 631–637 (2008).

    Article  CAS  Google Scholar 

  18. Hallikas, O. et al. Genome-wide prediction of mammalian enhancers based on analysis of transcription-factor binding affinity. Cell 124, 47–59 (2006).

    Article  CAS  Google Scholar 

  19. Palin, K., Taipale, J. & Ukkonen, E. Locating potential enhancer elements by comparative genomics using the EEL software. Nat. Protocols 1, 368–374 (2006).

    Article  CAS  Google Scholar 

  20. Barrett, J.C., Fry, B., Maller, J. & Daly, M.J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).

    Article  CAS  Google Scholar 

  21. Lickert, H. & Kemler, R. Functional analysis of cis-regulatory elements controlling initiation and maintenance of early Cdx1 gene expression in the mouse. Dev. Dyn. 225, 216–220 (2002).

    Article  CAS  Google Scholar 

  22. Jiang, J. & Levine, M. Binding affinities and cooperative interactions with bHLH activators delimit threshold responses to the dorsal gradient morphogen. Cell 72, 741–752 (1993).

    Article  CAS  Google Scholar 

  23. Yochum, G.S. et al. Serial analysis of chromatin occupancy identifies β-catenin target genes in colorectal carcinoma cells. Proc. Natl. Acad. Sci. USA 104, 3324–3329 (2007).

    Article  CAS  Google Scholar 

  24. Robertson, G. et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat. Methods 4, 651–657 (2007).

    Article  CAS  Google Scholar 

  25. Heintzman, N.D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311–318 (2007).

    Article  CAS  Google Scholar 

  26. Barrow, J.R. et al. Ectodermal Wnt3/β-catenin signalling is required for the establishment and maintenance of the apical ectodermal ridge. Genes Dev. 17, 394–409 (2003).

    Article  CAS  Google Scholar 

  27. Huelsken, J. et al. Requirement for β-catenin in anterior-posterior axis formation in mice. J. Cell Biol. 148, 567–578 (2000).

    Article  CAS  Google Scholar 

  28. Houlston, R.S. et al. Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer. Nat. Genet. 40, 1426–1435 (2008).

    Article  CAS  Google Scholar 

  29. Broderick, P. et al. A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk. Nat. Genet. 39, 1315–1317 (2007).

    Article  CAS  Google Scholar 

  30. Jaeger, E. et al. Common genetic variants at the CRAC1 (HMPS) locus on chromosome 15q13.3 influence colorectal cancer risk. Nat. Genet. 40, 26–28 (2008).

    Article  CAS  Google Scholar 

  31. Tomlinson, I.P. et al. A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3. Nat. Genet. 40, 623–630 (2008).

    Article  CAS  Google Scholar 

  32. Kiemeney, L.A. et al. Sequence variant on 8q24 confers susceptibility to urinary bladder cancer. Nat. Genet. 40, 1307–1312 (2008).

    Article  CAS  Google Scholar 

  33. Pomerantz, M.M. et al. The 8q24 cancer risk variant rs6983267 demonstrates long-range interaction with MYC in colorectal cancer. Nat. Genet. advance online publication, doi:10.1038/ng.403 (28 June 2009).

  34. Korinek, V. et al. Constitutive transcriptional activation by a β-catenin-Tcf complex in APC−/− colon carcinoma. Science 275, 1784–1787 (1997).

    Article  CAS  Google Scholar 

  35. Sansom, O.J. et al. Myc deletion rescues Apc deficiency in the small intestine. Nature 446, 676–679 (2007).

    Article  CAS  Google Scholar 

  36. Herbst, A. & Kolligs, F.T. Wnt signaling as a therapeutic target for cancer. Methods Mol. Biol. 361, 63–91 (2007).

    CAS  PubMed  Google Scholar 

  37. Soucek, L. et al. Modelling Myc inhibition as a cancer therapy. Nature 455, 679–683 (2008).

    Article  CAS  Google Scholar 

  38. Van der Flier, L.G. et al. The intestinal Wnt/TCF signature. Gastroenterology 132, 628–635 (2007).

    Article  CAS  Google Scholar 

  39. Otero, J.J., Fu, W., Kan, L., Cuadra, A.E. & Kessler, J.A. β-catenin signaling is required for neural differentiation of embryonic stem cells. Development 131, 3545–3557 (2004).

    Article  CAS  Google Scholar 

  40. Miller, C. & Sassoon, D.A. Wnt-7a maintains appropriate uterine patterning during the delopment of the mouse female reproductive tract. Development 125, 3201–3211 (1998).

    CAS  PubMed  Google Scholar 

  41. Lei, Q. et al. Wnt signaling inhibitors regulate the transcriptional response to morphogenetic Shh-Gli signaling in the neural tube. Dev. Cell 11, 325–337 (2006).

    Article  CAS  Google Scholar 

  42. Kioussi, C. et al. Identification of a Wnt/Dvl/β-catenin → Pitx2 pathway mediating cell-type-specific proliferation during development. Cell 111, 673–685 (2002).

    Article  CAS  Google Scholar 

  43. Aaltonen, L.A. et al. Incidence of hereditary nonpolyposis colorectal cancer and the feasibility of molecular screening for the disease. N. Engl. J. Med. 338, 1481–1487 (1998).

    Article  CAS  Google Scholar 

  44. Salovaara, R. et al. Population-based molecular detection of hereditary nonpolyposis colorectal cancer. J. Clin. Oncol. 18, 2193–2200 (2000).

    Article  CAS  Google Scholar 

  45. Badis, G. et al. Diversity and complexity in DNA recognition by transcription factors. Science advance online publication, doi:10.1126/science.1162327 (14 May 2009).

  46. Hallikas, O. & Taipale, J. High-throughput assay for determining specificity and affinity of protein-DNA binding interactions. Nat. Protoc. 1, 215–222 (2006).

    Article  CAS  Google Scholar 

  47. Taipale, J., Cooper, M.K., Maiti, T. & Beachy, P.A. Patched acts catalytically to suppress the activity of Smoothened. Nature 418, 892–897 (2002).

    Article  CAS  Google Scholar 

  48. Turunen, M.M., Dunlop, T.W., Carlberg, C. & Väisanen, S. Selective use of multiple vitamin D response elements underlies the 1α,25-dihydroxyvitamin D3-mediated negative regulation of the human CYP27B1 gene. Nucleic Acids Res. 35, 2734–2747 (2007).

    Article  CAS  Google Scholar 

  49. Audic, S. & Claverie, J.M. The significance of digital gene expression profiles. Genome Res. 7, 986–995 (1997).

    Article  CAS  Google Scholar 

  50. Kwan, T. et al. Genome-wide analysis of transcript isoform variation in humans. Nat. Genet. 40, 225–231 (2008).

    Article  CAS  Google Scholar 

  51. The International HapMap Consortium. The International HapMap Project. Nature 426, 789–796 (2003).

  52. Smyth, G.K. in Bioinformatics and Computional Biology Solutions using R and Bioconductor (ed. Gentleman. R.) Limma:linear models for microarray data (Springer, New York, 2005).

    Google Scholar 

  53. Laiho, P. et al. Serrated carcinomas form a subclass of colorectal cancer with distinct molecular basis. Oncogene 26, 312–320 (2007).

    Article  CAS  Google Scholar 

  54. Dai, M. et al. Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res. 33, e175 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from Academy of Finland (Finnish Center of Excellence Program 2006-2011), the Finnish Cancer Society, the Sigrid Juselius Foundation, the European Commission (LSHG-CT-2004-512142) and by grants to S.T. (Ida Montin Foundation, Biomedicum Helsinki Foundation, Paulo Foundation, Mary and Georg C. Ehrnrooth Foundation and Maud Kuistila Foundation). The work of R.S.H. and I.T. is supported by Cancer Research UK. We thank A. Syvänen from the Uppsala University SNP Platform and O. Monni from the University of Helsinki for Illumina Genome-analyzer sequencing, G. Yochum for control primer sequences for TCF4, and S. Marttinen, K. Pylvänäinen, T. Lehtinen, S. Miettinen, M. Kuris, M. Aho and I. Svedberg for technical assistance. L. Peltonen (National Public Health Institute) and the Nordic Center of Excellence in Disease Genetics provided the Finnish control SNP data.

Author information

Authors and Affiliations

Authors

Contributions

The study was designed and financial support was obtained by L.A.A. and J.T. The manuscript was drafted by L.A.A., J.T. and S.T. Wet-lab experiments were performed by S.T., M.T., O.H., M.B., G.W., J.Y. and I.N. M.D.-B., I.T. and R.S.H. provided the imputed SNP data. J.-P.M. and H.J. provided the Finnish CRC specimens, A.R. contributed to histopathological evaluation of materials. R.L., S.V., T.K., P.E., L.C.-C., K.P. and A.K. performed the computational and statistical analyses. K.P., E.U. and S.T. performed the EEL analyses.

Corresponding authors

Correspondence to Jussi Taipale or Lauri A Aaltonen.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Tables 1 and 2 and Supplementary Note (PDF 520 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuupanen, S., Turunen, M., Lehtonen, R. et al. The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling. Nat Genet 41, 885–890 (2009). https://doi.org/10.1038/ng.406

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.406

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing