Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genome-wide association and replication studies identify four variants associated with prostate cancer susceptibility

Abstract

We report a prostate cancer genome-wide association follow-on study. We discovered four variants associated with susceptibility to prostate cancer in several European populations: rs10934853[A] (OR = 1.12, P = 2.9 × 10−10) on 3q21.3; two moderately correlated (r2 = 0.07) variants, rs16902094[G] (OR = 1.21, P = 6.2 × 10−15) and rs445114[T] (OR = 1.14, P = 4.7 × 10−10), on 8q24.21; and rs8102476[C] (OR = 1.12, P = 1.6 × 10−11) on 19q13.2. We also refined a previous association signal on 11q13 with the SNP rs11228565[A] (OR = 1.23, P = 6.7 × 10−12). In a multivariate analysis using 22 prostate cancer risk variants typed in the Icelandic population, we estimated that carriers in the top 1.3% of the risk distribution are at a 2.5 times greater risk of developing the disease than members of the general population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gudmundsson, J. et al. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat. Genet. 39, 631–637 (2007).

    Article  CAS  Google Scholar 

  2. Haiman, C.A. et al. Multiple regions within 8q24 independently affect risk for prostate cancer. Nat. Genet. 39, 638–644 (2007).

    Article  CAS  Google Scholar 

  3. Gudmundsson, J. et al. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat. Genet. 39, 977–983 (2007).

    Article  CAS  Google Scholar 

  4. Eeles, R.A. et al. Multiple newly identified loci associated with prostate cancer susceptibility. Nat. Genet. 40, 316–321 (2008).

    Article  CAS  Google Scholar 

  5. Thomas, G. et al. Multiple loci identified in a genome-wide association study of prostate cancer. Nat. Genet. 40, 310–315 (2008).

    Article  CAS  Google Scholar 

  6. Gudmundsson, J. et al. Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nat. Genet. 40, 281–283 (2008).

    Article  CAS  Google Scholar 

  7. Yeager, M. et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat. Genet. 39, 645–649 (2007).

    Article  CAS  Google Scholar 

  8. Easton, D.F. et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447, 1087–1093 (2007).

    Article  CAS  Google Scholar 

  9. Amundadottir, L.T. et al. A common variant associated with prostate cancer in European and African populations. Nat. Genet. 38, 652–658 (2006).

    Article  CAS  Google Scholar 

  10. Tomlinson, I. et al. A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat. Genet. 39, 984–988 (2007).

    Article  CAS  Google Scholar 

  11. Zanke, B.W. et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nat. Genet. 39, 989–994 (2007).

    Article  CAS  Google Scholar 

  12. Haiman, C.A. et al. A common genetic risk factor for colorectal and prostate cancer. Nat. Genet. 39, 954–956 (2007).

    Article  CAS  Google Scholar 

  13. Kiemeney, L.A. et al. Sequence variant on 8q24 confers susceptibility to urinary bladder cancer. Nat. Genet. 40, 1307–1312 (2008).

    Article  CAS  Google Scholar 

  14. Ghoussaini, M. et al. Multiple loci with different cancer specificities within the 8q24 gene desert. J. Natl. Cancer Inst. 100, 962–966 (2008).

    Article  CAS  Google Scholar 

  15. Duggan, D. et al. Two genome-wide association studies of aggressive prostate cancer implicate putative prostate tumor suppressor gene DAB2IP. J. Natl. Cancer Inst. 99, 1836–1844 (2007).

    Article  CAS  Google Scholar 

  16. Kote-Jarai, Z. et al. Multiple novel prostate cancer predisposition loci confirmed by an international study: the PRACTICAL Consortium. Cancer Epidemiol. Biomarkers Prev. 17, 2052–2061 (2008); erratum 17, 2901 (2008).

    Article  CAS  Google Scholar 

  17. Rafnar, T. et al. Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat. Genet. 41, 221–227 (2009).

    Article  CAS  Google Scholar 

  18. Sun, J. et al. Evidence for two independent prostate cancer risk-associated loci in the HNF1B gene at 17q12. Nat. Genet. 40, 1153–1155 (2008).

    Article  CAS  Google Scholar 

  19. Sun, J. et al. Sequence variants at 22q13 are associated with prostate cancer risk. Cancer Res. 69, 10–15 (2009).

    Article  CAS  Google Scholar 

  20. Kutyavin, I.V. et al. A novel endonuclease IV post-PCR genotyping system. Nucleic Acids Res. 34, e128 (2006).

    Article  Google Scholar 

  21. Bentley, D.R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).

    Article  CAS  Google Scholar 

  22. Gretarsdottir, S. et al. The gene encoding phosphodiesterase 4D confers risk of ischemic stroke. Nat. Genet. 35, 131–138 (2003).

    Article  CAS  Google Scholar 

  23. Falk, C.T. & Rubinstein, P. Haplotype relative risks: an easy reliable way to construct a proper control sample for risk calculations. Ann. Hum. Genet. 51, 227–233 (1987).

    Article  CAS  Google Scholar 

  24. Mantel, N. & Haenszel, W. Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22, 719–748 (1959).

    CAS  Google Scholar 

  25. Styrkarsdottir, U. et al. Multiple genetic loci for bone mineral density and fractures. N. Engl. J. Med. 358, 2355–2365 (2008).

    Article  CAS  Google Scholar 

  26. Pe'er, I. et al. Evaluating and improving power in whole-genome association studies using fixed marker sets. Nat. Genet. 38, 663–667 (2006).

    Article  CAS  Google Scholar 

  27. Nicolae, D.L. Testing untyped alleles (TUNA)-applications to genome-wide association studies. Genet. Epidemiol. 30, 718–727 (2006).

    Article  Google Scholar 

  28. Zaitlen, N., Kang, H.M., Eskin, E. & Halperin, E. Leveraging the HapMap correlation structure in association studies. Am. J. Hum. Genet. 80, 683–691 (2007).

    Article  CAS  Google Scholar 

  29. Zheng, S.L. et al. Cumulative association of five genetic variants with prostate cancer. N. Engl. J. Med. 358, 910–919 (2008).

    Article  CAS  Google Scholar 

  30. Stefansson, H. et al. A common inversion under selection in Europeans. Nat. Genet. 37, 129–137 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the individuals who participated in the study and whose contribution made this work possible. This project was funded in part by contract number 202059 (PROMARK) from the Seventh Framework Program of the European Union to deCODE Genetics (T.R. and L.A.K.), in part by FP7-MC-IAPP Grant agreement no. 218071 (CancerGene) to deCODE Genetics, in part by a V Foundation award and US Department of Veterans Affairs grants to J.R.S., and in part by Academy of Finland, Sigrid Juselius Foundation, Finnish Cancer Organisations and the Competitive Research Funding of the Pirkanmaa Hospital District, Tampere University Hospital, to J.S.

Author information

Authors and Affiliations

Authors

Contributions

The study was designed and results were interpreted by J. Gudmundsson, P.S., A.K., U.T., T.R. and K.S. Statistical analysis was carried out by P.S., D.F.G., J. Gudmundsson, M.L.F. and A.K. Subject recruitment, biological material collection and handling along with genotyping were supervised and carried out by J. Gudmundsson, B.A.A., K.R.B., T.B., A.G., D.N.M., G.O., M.J., S.N.S., A.S., T.W., T.T., J.P.B., K.M.M., K.M.B., B.S., J. Godino, S.N., F.F., L.M., E.P., K.K.A., I.M.v.O., B.K.S., B.T.H., D.K., C.Z., K.K., J.R.G., G.V.E., E.J., W.J.C., J.I.M., L.A.K., J.R.S., J.S., R.B.B., U.T. and T.R. Authors J. Gudmundsson, P.S., D.F.G., T.R. and K.S. drafted the manuscript. All authors contributed to the final version of the paper. Principal investigators and corresponding authors for the respective replication study populations are: The Netherlands, L.A.K.; Spain, J.I.M.; Chicago, W.J.C.; Nashville, Tenn., USA, J.R.S.; Finland, J.S.

Corresponding authors

Correspondence to Javier Godino or Kari Stefansson.

Ethics declarations

Competing interests

The authors from deCODE in Reykjavik, Iceland are shareholders in deCODE Genetics, Inc.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–6, Supplementary Figure 1 and Supplementary Note. (PDF 223 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gudmundsson, J., Sulem, P., Gudbjartsson, D. et al. Genome-wide association and replication studies identify four variants associated with prostate cancer susceptibility. Nat Genet 41, 1122–1126 (2009). https://doi.org/10.1038/ng.448

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.448

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing