Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cloning of human, mouse and fission yeast recombination genes homologous to RAD51 and recA

A Correction to this article was published on 01 November 1993

Abstract

Rad51, of Saccharomyces cerevisiae, is a homologue of recA of Escherichia coli and plays crucial roles in both mitotic and meiotic recombination and in repair of double–strand breaks of DNA. We have cloned genes from human, mouse and fission yeast that are homologous to rad51. The 339 amino acid proteins predicted for the two mammalian genes are almost identical and are highly homologous (83%) with the yeast proteins. The mouse gene is transcribed at a high level in thymus, spleen, testis andpvary and at a lower level in brain and other tissues. The rad51 homologues fail to complement the DNA repair defect of rad51 mutants of S. cerevisiae. The mouse gene is located in the F1 region of chromosome 2 and the human gene maps to chromosome 15.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Horii, T., Ogawa, T. & Ogawa, H. Organization of the recA gene of Escherichia coli. Proc. natn. Acad. Sci. U.S.A. 77, 313–317 (1980).

    Article  CAS  Google Scholar 

  2. Masukata, H., Fujii, T., Ogawa, T. & Ogawa, H. Biologically active recombinant formed through DNA pairing by purified recA protein in vitro. Molec. gen. Genet. 189, 226–234 (1983).

    Article  CAS  Google Scholar 

  3. West, S. Enzymes and molecular mechanisms of genetic recombination. Ann. Rev. Biochem. 61, 603–640 (1992).

    Article  CAS  Google Scholar 

  4. Tomizawa, J. & Ogawa, H. Breakage of DNA in Rec+ and Rec bacteria by disintegration of radiophosphorous atoms in DNA and possible cause of pleiotropic effects of RecA mutation. Cold Spring Harb. Symp. quant Biol. 33, 243–251 (1968).

    Article  CAS  Google Scholar 

  5. Jachymczyk, W.J., Von Borstel, R.C., Mowat, M.R.A. & Hastings, P.J. Repair of interstrand cross-links in DNA of Saccharomyces cerevisiae requires two systems for DNA repair: The RAD3 system and the RAD51 system. Molec. gen. Genet. 182, 196–205 (1981).

    Article  CAS  Google Scholar 

  6. Shinohara, A., Ogawa, H. & Ogawa, T. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69, 457–470 (1992).

    Article  CAS  Google Scholar 

  7. Bishop, D.K., Park, D., Xu, L. & Kleckner, N. DMC1: A meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69, 439–456 (1992).

    Article  CAS  Google Scholar 

  8. Ogawa, T., Yu, X., Shinohara, A. & Egelman, E.H. Similarity of the Yeast Rad51 Filament to the Bacterial RecA Filament. Science 259, 1896–1899 (1993).

    Article  CAS  Google Scholar 

  9. Kozak, M. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucl. Acids Res. 16, 8126–8148 (1987).

    Google Scholar 

  10. Bezzubova, O., Shinohara, A., Mueller, R.G., Ogawa, H. & Buerstedde, J.-M. A chicken RAD51 homologue is expressed at high levels in lymphoid and reproductive organs. Nucl. Acids Res. 21, 1577–1580 (1993).

    Article  CAS  Google Scholar 

  11. Kobayashi, T., Hotta, Y. & Tabata, S. Isolation and characterization of a yeast gene which is homologous with a meiosis specific cDNA from a plant. Molec. gen. Genet. 237, 225–232 (1993).

    CAS  PubMed  Google Scholar 

  12. Matsuda, Y. et al. Location of the mouse complement factor H gene (cfh) by FISH analysis and replication R-banding. Cytogenet. cell Genet. 61, 282–285 (1992).

    Article  CAS  Google Scholar 

  13. Siracusa, L.D. & Abbott, C.M. Chromosome 2. Mamm. Genome 3, S20–S43 (1992).

    Article  CAS  Google Scholar 

  14. Story, R., Weber, I.T. & Steitz, T.A. The structure of the E. coli recA protein monomer and polymer. Nature 355, 318–325 (1992).

    Article  CAS  Google Scholar 

  15. Benedict, R.C. & Kowalczykowski, S.C. Increase of the DNA strand assimilation activity of recA protein by removal of the C-terminus and structure-function studies of the resulting protein fragment. J. biol. Chem. 263, 15513–15520 (1988).

    CAS  PubMed  Google Scholar 

  16. Yu, X. & Egelman, E.H. Removal of the RecA C-terminus results in a conformational change in the RecA-DNA filament. J. struct. Biol. 106, 243–254 (1991).

    Article  CAS  Google Scholar 

  17. Tateishi, S., Horii, T., Ogawa, T. & Ogawa, H. C-terminal truncated Escherichia coli RecA protein RecA5327 has enhanced binding affinities to single- and double-stranded DNAs. J. molec. Biol. 223, 115–129 (1992).

    Article  CAS  Google Scholar 

  18. Tonegawa, S. Somatic generation of antibody diversity. Nature 302, 575–581 (1983).

    Article  CAS  Google Scholar 

  19. Schatz, D.G., Oettinger, M.A. & Schissel, M.S. V(D)J recombination: Molecular biology and regulation. Ann. Rev. Immunol. 10, 359–383 (1992).

    Article  CAS  Google Scholar 

  20. Lutzker, S.G. & Alt, F.W. Immunoglobulin heavy-chain class switching. In The Mobile DNA (eds Berg, D.E. & Howe, M.M.) 693–714 (American Society of Microbiology, Washington, 1989).

    Google Scholar 

  21. Basile, G., Aker, M. & Mortimer, R.T. Nucleotide sequence and transcriptional regulation of the yeast recombinational repair gene RAD51. Molec. cell. Biol. 12, 3235–3246 (1992).

    Article  CAS  Google Scholar 

  22. Resnick, M.A. Investigating the genetic control of biochemical events in meiotic recombination. In The Meiosis (ed. Moens, P.B.) 157–210 (Academic Press, New York, 1987).

    Chapter  Google Scholar 

  23. Lewin, B. Commitment and activation at Pol II promoters: A tail of protein-protein interactions. Cell 61, 1161–1164 (1990).

    Article  CAS  Google Scholar 

  24. Gill, G. & Tjian, R. A highly conserved domain of TFIID displays species specificity in vivo. Cell 65, 333–340 (1991).

    Article  CAS  Google Scholar 

  25. Cormack, B.P., Strubin, M., Ponticelli, A.S. & Struhl, K. Functional differences between yeast and human TFIID are localized to highly conserved region. Cell 65, 341–348 (1991).

    Article  CAS  Google Scholar 

  26. Sanger, F., Nicklen, S. & Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  CAS  Google Scholar 

  27. Feinberg, A.P. & Vogelstein, B. A technique for radiolabelling DNA restriction endonuclease fragment to high specific activity. Anal. Biochem. 132, 6–13 (1983).

    Article  CAS  Google Scholar 

  28. Kunkel, T.A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. natn. Acad. Sci. U.S.A. 82, 488–492 (1985).

    Article  CAS  Google Scholar 

  29. Nei, M. Molecular Population Genetics and Evolution (North-Holland/American. Elsevier, Amsterdam, 1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shinohara, A., Ogawa, H., Matsuda, Y. et al. Cloning of human, mouse and fission yeast recombination genes homologous to RAD51 and recA. Nat Genet 4, 239–243 (1993). https://doi.org/10.1038/ng0793-239

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0793-239

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing