Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Recombination and linkage disequilibrium in Arabidopsis thaliana

Abstract

Linkage disequilibrium (LD) is a major aspect of the organization of genetic variation in natural populations. Here we describe the genome-wide pattern of LD in a sample of 19 Arabidopsis thaliana accessions using 341,602 non-singleton SNPs. LD decays within 10 kb on average, considerably faster than previously estimated. Tag SNP selection algorithms and 'hide-the-SNP' simulations suggest that genome-wide association mapping will require only 40%–50% of the observed SNPs, a reduction similar to estimates in a sample of African Americans. An Affymetrix genotyping array containing 250,000 SNPs has been designed based on these results; we demonstrate that it should have more than adequate coverage for genome-wide association mapping. The extent of LD is highly variable, and we find clear evidence of recombination hotspots, which seem to occur preferentially in intergenic regions. LD also reflects the action of selection, and it is more extensive between nonsynonymous polymorphisms than between synonymous polymorphisms.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Decay of LD.
Figure 2: Recombination rate variation on chromosome 1 (centromere excluded).
Figure 3: The decay of LD across strong hotspots in two 70 kb regions.
Figure 4: Evidence of purifying selection on different types of sites.

References

  1. Clark, R.M. et al. Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317, 338–342 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Nordborg, M. et al. The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol. 3, e196 (2005)(doi:10.1371/journal.pbio.0030196).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Plagnol, V., Padhukasharam, B., Marjoram, P., Wall, J.D. & Nordborg, M. Relative influences of crossing-over and gene conversion on the pattern of linkage disequilibrium in Arabidopsis thaliana. Genetics 172, 2441–2448 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nordborg, M. Linkage disequilibrium, gene trees, and selfing: An ancestral recombination graph with partial self-fertilization. Genetics 154, 923–929 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hudson, R.R. Two-locus sample distributions and their applications. Genetics 159, 1805–1817 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Padhukasahasram, B., Wall, J.D., Marjoram, P. & Nordborg, M. Estimating recombination rates from single-nucleotide polymorphisms using summary statistics. Genetics 174, 1517–1528 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Haddrill, P.R., Thornton, K.R., Charlesworth, B. & Andolfatto, P. Multilocus patterns of nucleotide variability and the demographic and selection history of Drosophila melanogaster populations. Genome Res. 15, 790–799 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Przeworski, M. & Wall, J.D. Why is there so little intragenic linkage disequilibrium in humans? Genet. Res. 77, 143–151 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Frisse, L. et al. Gene conversion and different population histories may explain the contrast between polymorphism and linkage disequilibrium levels. Am. J. Hum. Genet. 69, 831–843 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hagenblad, J. & Nordborg, M. Sequence variation and haplotype structure surrounding the flowering time locus FRI in Arabidopsis thaliana. Genetics 161, 289–298 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Haubold, B., Kroymann, J., Ratzka, A., Mitchell-Olds, T. & Wiehe, T. Recombination and gene conversion in a 170-kb genomic region of Arabidopsis thaliana. Genetics 161, 1269–1278 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hinds, D.A. et al. Whole-genome patterns of common DNA variation in three human populations. Science 307, 1072–1079 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. de Bakker, P.I.W. et al. Efficiency and power in genetic association studies. Nat. Genet. 37, 1217–1223 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Johnson, G.C. et al. Haplotype tagging for the identification of common disease genes. Nat. Genet. 29, 233–237 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Zondervan, K.T. & Cardon, L.R. The complex interplay among factors that influence allelic association. Nat. Rev. Genet. 5, 89–100 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

  17. Wall, J.D. & Pritchard, J.K. Haplotype blocks and linkage disequilibrium in the human genome. Nat. Rev. Genet. 4, 587–597 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Arnheim, N., Calabrese, P. & Nordborg, M. Hot and cold spots of recombination in the human genome: The reason we should find them and how this can be achieved. Am. J. Hum. Genet. 73, 5–16 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Drouaud, J. et al. Variation in crossing-over rates across chromosome4 of Arabidopsis thaliana reveals the presence of meiotic recombination hot spots. Genome Res. 16, 106–114 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schmuths, H., Meister, A., Horres, R. & Bachmann, K. Genome size variation among accessions of Arabidopsis thaliana. Ann. Bot. (Lond.) 93, 317–321 (2004).

    Article  CAS  Google Scholar 

  21. Nordborg, M. & Tavaré, S. Linkage disequilibrium: what history has to tell us. Trends Genet. 18, 83–90 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Hudson, R.R. & Kaplan, N.L. Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111, 147–164 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Andolfatto, P. Adaptive evolution of non-coding DNA in Drosophila. Nature 437, 1149–1152 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Li, N. & Stephens, M. Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. Genetics 165, 2213–2233 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hudson, R.R. Generating samples under a Wright-Fisher neutral model. Bioinformatics 18, 337–338 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Andolfatto, P. & Nordborg, M. The effect of gene conversion on intralocus associations. Genetics 148, 1397–1399 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Barrett, J.C., Fry, B., Maller, J. & Daly, M.J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support was provided by grants from the US National Institutes of Health (HG002790 to M. Waterman, GM62932 to D.W. and a postdoctoral fellowship to C.T.) and the US National Science Foundation (DEB-0115062 to M.N.) and by funds from the Max Planck Society. D.W. is a director of the Max Planck Institute.

Author information

Authors and Affiliations

Authors

Contributions

S.K., V.P., T.T.H. and C.T. carried out all the population genetics analyses and assisted with writing the paper. R.M.C. and S.O. analyzed the raw array data. J.R.E. and D.W. directed the array resequencing project. M.N. directed the population genetics analyses and wrote the paper. All authors commented on and revised the manuscript.

Corresponding author

Correspondence to Magnus Nordborg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Table 1, Supplementary Methods (PDF 1475 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Plagnol, V., Hu, T. et al. Recombination and linkage disequilibrium in Arabidopsis thaliana. Nat Genet 39, 1151–1155 (2007). https://doi.org/10.1038/ng2115

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng2115

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing