Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Challenges and standards in integrating surveys of structural variation

Abstract

There has been an explosion of data describing newly recognized structural variants in the human genome. In the flurry of reporting, there has been no standard approach to collecting the data, assessing its quality or describing identified features. This risks becoming a rampant problem, in particular with respect to surveys of copy number variation and their application to disease studies. Here, we consider the challenges in characterizing and documenting genomic structural variants. From this, we derive recommendations for standards to be adopted, with the aim of ensuring the accurate presentation of this form of genetic variation to facilitate ongoing research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lexicon of genomic variation.

Similar content being viewed by others

References

  1. Feuk, L., Carson, A.R. & Scherer, S.W. Structural variation in the human genome. Nat. Rev. Genet. 7, 85–97 (2006).

    Article  CAS  Google Scholar 

  2. Freeman, J.L. et al. Copy number variation: new insights in genome diversity. Genome Res. 16, 949–961 (2006).

    Article  CAS  Google Scholar 

  3. Sharp, A.J., Cheng, Z. & Eichler, E.E. Structural variation of the human genome. Annu. Rev. Genomics Hum. Genet. 7, 407–442 (2006).

    Article  CAS  Google Scholar 

  4. Iafrate, A.J. et al. Detection of large-scale variation in the human genome. Nat. Genet. 36, 949–951 (2004).

    Article  CAS  Google Scholar 

  5. Sebat, J. et al. Large-scale copy number polymorphism in the human genome. Science 305, 525–528 (2004).

    Article  CAS  Google Scholar 

  6. Tuzun, E. et al. Fine-scale structural variation of the human genome. Nat. Genet. 37, 727–732 (2005).

    Article  CAS  Google Scholar 

  7. Conrad, D.F., Andrews, T.D., Carter, N.P., Hurles, M.E. & Pritchard, J.K. A high-resolution survey of deletion polymorphism in the human genome. Nat. Genet. 38, 75–81 (2006).

    Article  CAS  Google Scholar 

  8. Hinds, D.A., Kloek, A.P., Jen, M., Chen, X. & Frazer, K.A. Common deletions and SNPs are in linkage disequilibrium in the human genome. Nat. Genet. 38, 82–85 (2006).

    Article  CAS  Google Scholar 

  9. Locke, D.P. et al. Linkage disequilibrium and heritability of copy-number polymorphisms within duplicated regions of the human genome. Am. J. Hum. Genet. 79, 275–290 (2006).

    Article  CAS  Google Scholar 

  10. McCarroll, S.A. et al. Common deletion polymorphisms in the human genome. Nat. Genet. 38, 86–92 (2006).

    Article  CAS  Google Scholar 

  11. Redon, R. et al. Global variation in copy number in the human genome. Nature 444, 444–454 (2006).

    Article  CAS  Google Scholar 

  12. Simon-Sanchez, J. et al. Genome-wide SNP assay reveals structural genomic variation, extended homozygosity and cell-line induced alterations in normal individuals. Hum. Mol. Genet. 16, 1–14 (2007).

    Article  CAS  Google Scholar 

  13. Vissers, L.E. et al. Array-based comparative genomic hybridization for the genomewide detection of submicroscopic chromosomal abnormalities. Am. J. Hum. Genet. 73, 1261–1270 (2003).

    Article  CAS  Google Scholar 

  14. Locke, D.P. et al. BAC microarray analysis of 15q11-q13 rearrangements and the impact of segmental duplications. J. Med. Genet. 41, 175–182 (2004).

    Article  CAS  Google Scholar 

  15. Shaw-Smith, C. et al. Microarray based comparative genomic hybridisation (array-CGH) detects submicroscopic chromosomal deletions and duplications in patients with learning disability/mental retardation and dysmorphic features. J. Med. Genet. 41, 241–248 (2004).

    Article  CAS  Google Scholar 

  16. de Vries, B.B. et al. Diagnostic genome profiling in mental retardation. Am. J. Hum. Genet. 77, 606–616 (2005).

    Article  CAS  Google Scholar 

  17. Koolen, D.A. et al. A new chromosome 17q21.31 microdeletion syndrome associated with a common inversion polymorphism. Nat. Genet. 38, 999–1001 (2006).

    Article  CAS  Google Scholar 

  18. Sharp, A.J. et al. Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome. Nat. Genet. 38, 1038–1042 (2006).

    Article  CAS  Google Scholar 

  19. Shaw-Smith, C. et al. Microdeletion encompassing MAPT at chromosome 17q21.3 is associated with developmental delay and learning disability. Nat. Genet. 38, 1032–1037 (2006).

    Article  CAS  Google Scholar 

  20. Urban, A.E. et al. High-resolution mapping of DNA copy alterations in human chromosome 22 using high-density tiling oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 103, 4534–4539 (2006).

    Article  CAS  Google Scholar 

  21. Szatmari, P. et al. Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat. Genet. 39, 319–328 (2007).

    Article  CAS  Google Scholar 

  22. Zhang, J., Feuk, L., Duggan, G.E., Khaja, R. & Scherer, S.W. Development of bioinformatics resources for display and analysis of copy number and other structural variants in the human genome. Cytogenet. Genome Res. 115, 205–214 (2006).

    Article  CAS  Google Scholar 

  23. Cooper, G.M., Nickerson, D.A. & Eichler, E.E. Mutational and selective effects on copy-number variants in the human genome. Nat. Genet. 39, S22–S29 (2007).

    Article  CAS  Google Scholar 

  24. Lee, C., Iafrate, A.J. & Brothman, A.R. Copy number variations and clinical cytogenetic diagnosis of constitutional disorders. Nat. Genet. 39, S48–S54 (2007).

    Article  CAS  Google Scholar 

  25. McCarroll, S.A. & Altshuler, D.M. Copy-number variation and association studies of human disease. Nat. Genet. 39, S37–S42 (2007).

    Article  CAS  Google Scholar 

  26. Eichler, E.E. et al. Completing the map of human genetic variation. Nature 447, 161–165 (2007).

    Article  CAS  Google Scholar 

  27. Shendure, J., Mitra, R.D., Varma, C. & Church, G.M. Advanced sequencing technologies: methods and goals. Nat. Rev. Genet. 5, 335–344 (2004).

    Article  CAS  Google Scholar 

  28. Bennett, S.T., Barnes, C., Cox, A., Davies, L. & Brown, C. Toward the $1,000 human genome. Pharmacogenomics 6, 373–382 (2005).

    Article  CAS  Google Scholar 

  29. Bentley, D.R. Whole-genome re-sequencing. Curr. Opin. Genet. Dev. 16, 545–552 (2006).

    Article  CAS  Google Scholar 

  30. Service, R.F. Gene sequencing. The race for the $1000 genome. Science 311, 1544–1546 (2006).

    Article  CAS  Google Scholar 

  31. Altshuler, D. et al. An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 407, 513–516 (2000).

    Article  CAS  Google Scholar 

  32. Mullikin, J.C. et al. An SNP map of human chromosome 22. Nature 407, 516–520 (2000).

    Article  CAS  Google Scholar 

  33. Sachidanandam, R. et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409, 928–933 (2001).

    Article  CAS  Google Scholar 

  34. Report of the Standing Committee on Human Cytogenetic Nomenclature, ISCN 1985. An International System for Human Cytogenetic Nomenclature. Birth Defects Orig. Artic. Ser. 21, 1–117 (1985).

  35. Heim, S. Genetic nomenclature: ISCN and ISGN. Pediatr. Hematol. Oncol. 13, iii (1996).

    Article  CAS  Google Scholar 

  36. den Dunnen, J.T. & Antonarakis, S.E. Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum. Mutat. 15, 7–12 (2000).

    Article  CAS  Google Scholar 

  37. Eichler, E.E. Widening the spectrum of human genetic variation. Nat. Genet. 38, 9–11 (2006).

    Article  CAS  Google Scholar 

  38. Istrail, S. et al. Whole-genome shotgun assembly and comparison of human genome assemblies. Proc. Natl. Acad. Sci. USA 101, 1916–1921 (2004).

    Article  CAS  Google Scholar 

  39. Khaja, R. et al. Genome assembly comparison identifies structural variants in the human genome. Nat. Genet. 38, 1413–1418 (2006).

    Article  CAS  Google Scholar 

  40. Sharp, A.J. et al. Segmental duplications and copy-number variation in the human genome. Am. J. Hum. Genet. 77, 78–88 (2005).

    Article  CAS  Google Scholar 

  41. Wong, K.K. et al. A comprehensive analysis of common copy-number variations in the human genome. Am. J. Hum. Genet. 80, 91–104 (2007).

    Article  CAS  Google Scholar 

  42. Mills, R.E. et al. An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res. 16, 1182–1190 (2006).

    Article  CAS  Google Scholar 

  43. Carter, N.P. Methods and strategies for analyzing copy number variation using DNA microarrays. Nat. Genet. 39, S16–S21 (2007).

    Article  CAS  Google Scholar 

  44. Cheung, J. et al. Genome-wide detection of segmental duplications and potential assembly errors in the human genome sequence. Genome Biol. 4, R25 (2003).

    Article  Google Scholar 

  45. Bailey, J.A. & Eichler, E.E. Primate segmental duplications: crucibles of evolution, diversity and disease. Nat. Rev. Genet. 7, 552–564 (2006).

    Article  CAS  Google Scholar 

  46. Risin, S., Hopwood, V.L. & Pathak, S. Trisomy 12 in Epstein-Barr virus-transformed lymphoblastoid cell lines of normal individuals and patients with nonhematologic malignancies. Cancer Genet. Cytogenet. 60, 164–169 (1992).

    Article  CAS  Google Scholar 

  47. Carson, A.R., Feuk, L., Mohammed, M. & Scherer, S.W. Strategies for the detection of copy number and other structural variants in the human genome. Hum. Genomics 2, 403–414 (2006).

    Article  CAS  Google Scholar 

  48. Burgoon, L.D. The need for standards, not guidelines, in biological data reporting and sharing. Nat. Biotechnol. 24, 1369–1373 (2006).

    Article  CAS  Google Scholar 

  49. Brazma, A. et al. Minimum information about a microarray experiment (MIAME)—toward standards for microarray data. Nat. Genet. 29, 365–371 (2001).

    Article  CAS  Google Scholar 

  50. Lander, E. & Kruglyak, L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat. Genet. 11, 241–247 (1995).

    Article  CAS  Google Scholar 

  51. Barrett, T. et al. NCBI GEO: mining tens of millions of expression profiles–database and tools update. Nucleic Acids Res. 35, D760–D765 (2007).

    Article  CAS  Google Scholar 

  52. Parkinson, H. et al. ArrayExpress–a public database of microarray experiments and gene expression profiles. Nucleic Acids Res. 35, D747–D750 (2007).

    Article  CAS  Google Scholar 

  53. Ikeo, K., Ishi-i, J., Tamura, T., Gojobori, T. & Tateno, Y. CIBEX: center for information biology gene expression database. C. R. Biol. 326, 1079–1082 (2003).

    Article  CAS  Google Scholar 

  54. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodological) 57, 289–300 (1995).

    Google Scholar 

  55. Feuk, L., Marshall, C.R., Wintle, R.F. & Scherer, S.W. Structural variants: changing the landscape of chromosomes and design of disease studies. Hum. Mol. Genet. 15 (special no. 1), R57–R66 (2006).

    Article  CAS  Google Scholar 

  56. Lee, J.A. & Lupski, J.R. Genomic rearrangements and gene copy-number alterations as a cause of nervous system disorders. Neuron 52, 103–121 (2006).

    Article  CAS  Google Scholar 

  57. Lupski, J.R. et al. DNA duplication associated with Charcot-Marie-Tooth disease type 1A. Cell 66, 219–232 (1991).

    Article  CAS  Google Scholar 

  58. Ewart, A.K. et al. Hemizygosity at the elastin locus in a developmental disorder, Williams syndrome. Nat. Genet. 5, 11–16 (1993).

    Article  CAS  Google Scholar 

  59. Chance, P.F. et al. Two autosomal dominant neuropathies result from reciprocal DNA duplication/deletion of a region on chromosome 17. Hum. Mol. Genet. 3, 223–228 (1994).

    Article  CAS  Google Scholar 

  60. Chen, K.S. et al. Homologous recombination of a flanking repeat gene cluster is a mechanism for a common contiguous gene deletion syndrome. Nat. Genet. 17, 154–163 (1997).

    Article  CAS  Google Scholar 

  61. Small, K., Iber, J. & Warren, S.T. Emerin deletion reveals a common X-chromosome inversion mediated by inverted repeats. Nat. Genet. 16, 96–99 (1997).

    Article  CAS  Google Scholar 

  62. Potocki, L. et al. Molecular mechanism for duplication 17p11.2— the homologous recombination reciprocal of the Smith-Magenis microdeletion. Nat. Genet. 24, 84–87 (2000).

    Article  CAS  Google Scholar 

  63. Kurotaki, N. et al. Haploinsufficiency of NSD1 causes Sotos syndrome. Nat. Genet. 30, 365–366 (2002).

    Article  CAS  Google Scholar 

  64. Bailey, J.A., Yavor, A.M., Massa, H.F., Trask, B.J. & Eichler, E.E. Segmental duplications: organization and impact within the current human genome project assembly. Genome Res. 11, 1005–1017 (2001).

    Article  CAS  Google Scholar 

  65. Bailey, J.A. et al. Recent segmental duplications in the human genome. Science 297, 1003–1007 (2002).

    Article  CAS  Google Scholar 

  66. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).

  67. Budarf, M.L. & Emanuel, B.S. Progress in the autosomal segmental aneusomy syndromes (SASs): single or multi-locus disorders? Hum. Mol. Genet. 6, 1657–1665 (1997).

    Article  CAS  Google Scholar 

  68. Fiegler, H. et al. Accurate and reliable high-throughput detection of copy number variation in the human genome. Genome Res. 16, 1566–1574 (2006).

    Article  CAS  Google Scholar 

  69. Komura, D. et al. Genome-wide detection of human copy number variations using high-density DNA oligonucleotide arrays. Genome Res. 16, 1575–1584 (2006).

    Article  CAS  Google Scholar 

  70. Lin, M. et al. dChipSNP: significance curve and clustering of SNP-array-based loss-of-heterozygosity data. Bioinformatics 20, 1233–1240 (2004).

    Article  CAS  Google Scholar 

  71. Nannya, Y. et al. A robust algorithm for copy number detection using high-density oligonucleotide single nucleotide polymorphism genotyping arrays. Cancer Res. 65, 6071–6079 (2005).

    Article  CAS  Google Scholar 

  72. Colella, S. et al. QuantiSNP: an objective Bayes hidden-Markov model to detect and accurately map copy number variation using SNP genotyping data. Nucleic Acids Res. 35, 2013–2025 (2007).

    Article  CAS  Google Scholar 

  73. Conrad, D.F. & Hurles, M.E. The population genetics of structural variation. Nat. Genet. 39, S30–S36 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Janet Buchanan for assistance in manuscript preparation and D. Pinto, C. Marshall, R. Redon, I. Ragoussis and A. Carson for sharing ideas and unpublished data. The work is supported by Genome Canada/Ontario Genomics Institute, The Centre for Applied Genomics, the Canadian Institutes of Health Research (CIHR), the McLaughlin Centre for Molecular Medicine, the Canadian Institute of Advanced Research and the Hospital for Sick Children Foundation. M.E.H. and N.P.C. are supported by the Wellcome Trust. L.F. is supported by CIHR and S.W.S. is an Investigator of CIHR and holds the GlaxoSmithKline/CIHR Pathfinder Chair in Genetics and Genomics at the Hospital for Sick Children and the University of Toronto.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Complexities of assessing different classes of copy number variants (CNVs). (PDF 36 kb)

Supplementary Fig. 2

A hypothetical genomic region and the ability of different screening technology platforms to identify particular structural variants. (PDF 18 kb)

Supplementary Fig. 3

CNVs within regions of segmental duplication. (PDF 51 kb)

Supplementary Table 1

Comparison of CNVs detected with different platforms and analysis tools. (PDF 9 kb)

Supplementary Table 2

Summary of 12 published surveys (2004–2007) of structural variation content in human genomes. (PDF 89 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scherer, S., Lee, C., Birney, E. et al. Challenges and standards in integrating surveys of structural variation. Nat Genet 39 (Suppl 7), S7–S15 (2007). https://doi.org/10.1038/ng2093

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng2093

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing