Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A module of negative feedback regulators defines growth factor signaling

Abstract

Signaling pathways invoke interplays between forward signaling and feedback to drive robust cellular response. In this study, we address the dynamics of growth factor signaling through profiling of protein phosphorylation and gene expression, demonstrating the presence of a kinetically defined cluster of delayed early genes that function to attenuate the early events of growth factor signaling. Using epidermal growth factor receptor signaling as the major model system and concentrating on regulation of transcription and mRNA stability, we demonstrate that a number of genes within the delayed early gene cluster function as feedback regulators of immediate early genes. Consistent with their role in negative regulation of cell signaling, genes within this cluster are downregulated in diverse tumor types, in correlation with clinical outcome. More generally, our study proposes a mechanistic description of the cellular response to growth factors by defining architectural motifs that underlie the function of signaling networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MAPKs are a node of transcription-dependent feedback regulation.
Figure 2: Circuitry of growth factor–induced transcriptional regulation.
Figure 3: The delayed early genes MAFF, KLF2 and KLF6 repress EGF-driven gene transcription.
Figure 4: Induction of the ZFP36 ensures rapid degradation of transiently induced genes.
Figure 5: Transcription-repressor and RNA-binding DEGs are coordinately downregulated in multiple human tumors.
Figure 6: A common architecture underlies gene expression programs activated by stimulation of MCF10A cells with EGF or serum.
Figure 7: Pathway-specific induction of DUSPs.
Figure 8: Potential network motifs used by the EGF-induced transcription program.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Freeman, M. Feedback control of intercellular signalling in development. Nature 408, 313–319 (2000).

    Article  CAS  Google Scholar 

  2. Alon, U. An Introduction to Systems Biology: Design Principles of Biological Circuits (CRC Press, Boca Raton, Florida, 2006).

    Google Scholar 

  3. Kholodenko, B.N. Cell-signalling dynamics in time and space. Nat. Rev. Mol. Cell Biol. 7, 165–176 (2006).

    Article  CAS  Google Scholar 

  4. Citri, A. & Yarden, Y. EGF-ERBB signalling: towards the systems level. Nat. Rev. Mol. Cell Biol. 7, 505–516 (2006).

    Article  CAS  Google Scholar 

  5. Hynes, N.E. & Lane, H.A. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat. Rev. Cancer 5, 341–354 (2005).

    Article  CAS  Google Scholar 

  6. Shaulian, E. & Karin, M. AP-1 as a regulator of cell life and death. Nat. Cell Biol. 4, E131–E136 (2002).

    Article  CAS  Google Scholar 

  7. Sun, H., Charles, C.H., Lau, L.F. & Tonks, N.K. MKP-1 (3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo. Cell 75, 487–493 (1993).

    Article  CAS  Google Scholar 

  8. Lau, L.F. & Nathans, D. Expression of a set of growth-related immediate early genes in BALB/c 3T3 cells: coordinate regulation with c-fos or c-myc. Proc. Natl. Acad. Sci. USA 84, 1182–1186 (1987).

    Article  CAS  Google Scholar 

  9. Sheehan, K.M. et al. Use of reverse phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma. Mol. Cell. Proteomics 4, 346–355 (2005).

    Article  CAS  Google Scholar 

  10. Casci, T. & Freeman, M. Control of EGF receptor signalling: lessons from fruitflies. Cancer Metastasis Rev. 18, 181–201 (1999).

    Article  CAS  Google Scholar 

  11. Jones, S.M. & Kazlauskas, A. Growth-factor-dependent mitogenesis requires two distinct phases of signalling. Nat. Cell Biol. 3, 165–172 (2001).

    Article  CAS  Google Scholar 

  12. Klein, O.D. et al. Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling. Dev. Cell 11, 181–190 (2006).

    Article  CAS  Google Scholar 

  13. Segal, E., Friedman, N., Koller, D. & Regev, A. A module map showing conditional activity of expression modules in cancer. Nat. Genet. 36, 1090–1098 (2004).

    Article  CAS  Google Scholar 

  14. Iyer, V.R. et al. The transcriptional program in the response of human fibroblasts to serum. Science 283, 83–87 (1999).

    Article  CAS  Google Scholar 

  15. Kalir, S. et al. Ordering genes in a flagella pathway by analysis of expression kinetics from living bacteria. Science 292, 2080–2083 (2001).

    Article  CAS  Google Scholar 

  16. Zhang, W. et al. The functional landscape of mouse gene expression. J. Biol. 3, 21 (2004).

    Article  Google Scholar 

  17. Farooq, A. & Zhou, M.M. Structure and regulation of MAPK phosphatases. Cell. Signal. 16, 769–779 (2004).

    Article  CAS  Google Scholar 

  18. Qu, Z. et al. The transcriptional corepressor NAB2 inhibits NGF-induced differentiation of PC12 cells. J. Cell Biol. 142, 1075–1082 (1998).

    Article  CAS  Google Scholar 

  19. Hoffmann, E. et al. MEK1-dependent delayed expression of Fos-related antigen-1 counteracts c-Fos and p65 NF-kappaB-mediated interleukin-8 transcription in response to cytokines or growth factors. J. Biol. Chem. 280, 9706–9718 (2005).

    Article  CAS  Google Scholar 

  20. Szabowski, A. et al. c-Jun and JunB antagonistically control cytokine-regulated mesenchymal-epidermal interaction in skin. Cell 103, 745–755 (2000).

    Article  CAS  Google Scholar 

  21. Yates, P.R., Atherton, G.T., Deed, R.W., Norton, J.D. & Sharrocks, A.D. Id helix-loop-helix proteins inhibit nucleoprotein complex formation by the TCF ETS-domain transcription factors. EMBO J. 18, 968–976 (1999).

    Article  CAS  Google Scholar 

  22. Gilchrist, M. et al. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441, 173–178 (2006).

    Article  CAS  Google Scholar 

  23. Fu, S., Bottoli, I., Goller, M. & Vogt, P.K. Heparin-binding epidermal growth factor-like growth factor, a v-Jun target gene, induces oncogenic transformation. Proc. Natl. Acad. Sci. USA 96, 5716–5721 (1999).

    Article  CAS  Google Scholar 

  24. Barton, K. et al. Defective thymocyte proliferation and IL-2 production in transgenic mice expressing a dominant-negative form of CREB. Nature 379, 81–85 (1996).

    Article  CAS  Google Scholar 

  25. Narla, G. et al. KLF6, a candidate tumor suppressor gene mutated in prostate cancer. Science 294, 2563–2566 (2001).

    Article  CAS  Google Scholar 

  26. Motohashi, H., Katsuoka, F., Shavit, J.A., Engel, J.D. & Yamamoto, M. Positive or negative MARE-dependent transcriptional regulation is determined by the abundance of small Maf proteins. Cell 103, 865–875 (2000).

    Article  CAS  Google Scholar 

  27. Wisdom, R. & Verma, I.M. Proto-oncogene FosB: the amino terminus encodes a regulatory function required for transformation. Mol. Cell. Biol. 13, 2635–2643 (1993).

    Article  CAS  Google Scholar 

  28. Das, H. et al. Kruppel-like factor 2 (KLF2) regulates proinflammatory activation of monocytes. Proc. Natl. Acad. Sci. USA 103, 6653–6658 (2006).

    Article  CAS  Google Scholar 

  29. Sassone-Corsi, P., Sisson, J.C. & Verma, I.M. Transcriptional autoregulation of the proto-oncogene fos. Nature 334, 314–319 (1988).

    Article  CAS  Google Scholar 

  30. Sevetson, B.R., Svaren, J. & Milbrandt, J. A novel activation function for NAB proteins in EGR-dependent transcription of the luteinizing hormone beta gene. J. Biol. Chem. 275, 9749–9757 (2000).

    Article  CAS  Google Scholar 

  31. Kaszubska, W. et al. Cyclic AMP-independent ATF family members interact with NF-kappa B and function in the activation of the E-selectin promoter in response to cytokines. Mol. Cell. Biol. 13, 7180–7190 (1993).

    Article  CAS  Google Scholar 

  32. Claret, F.X., Hibi, M., Dhut, S., Toda, T. & Karin, M. A new group of conserved coactivators that increase the specificity of AP-1 transcription factors. Nature 383, 453–457 (1996).

    Article  CAS  Google Scholar 

  33. Carballo, E., Lai, W.S. & Blackshear, P.J. Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science 281, 1001–1005 (1998).

    Article  CAS  Google Scholar 

  34. Chen, C.Y. et al. AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 107, 451–464 (2001).

    Article  CAS  Google Scholar 

  35. Bakheet, T., Williams, B.R. & Khabar, K.S. ARED 3.0: the large and diverse AU-rich transcriptome. Nucleic Acids Res. 34, D111–D114 (2006).

    Article  CAS  Google Scholar 

  36. Sharrocks, A.D. The ETS-domain transcription factor family. Nat. Rev. Mol. Cell Biol. 2, 827–837 (2001).

    Article  CAS  Google Scholar 

  37. Irie, H.Y. et al. Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial-mesenchymal transition. J. Cell Biol. 171, 1023–1034 (2005).

    Article  CAS  Google Scholar 

  38. Meijlink, F., Curran, T., Miller, A.D. & Verma, I.M. Removal of a 67-base-pair sequence in the noncoding region of protooncogene fos converts it to a transforming gene. Proc. Natl. Acad. Sci. USA 82, 4987–4991 (1985).

    Article  CAS  Google Scholar 

  39. Mangan, S., Itzkovitz, S., Zaslaver, A. & Alon, U. The incoherent feed-forward loop accelerates the response-time of the gal system of Escherichia coli. J. Mol. Biol. 356, 1073–1081 (2006).

    Article  CAS  Google Scholar 

  40. Lu, J.Y., Sadri, N. & Schneider, R.J. Endotoxic shock in AUF1 knockout mice mediated by failure to degrade proinflammatory cytokine mRNAs. Genes Dev. 20, 3174–3184 (2006).

    Article  CAS  Google Scholar 

  41. Trotman, L.C. et al. Identification of a tumour suppressor network opposing nuclear Akt function. Nature 441, 523–527 (2006).

    Article  CAS  Google Scholar 

  42. Wang, F. et al. Transcriptional repression of WEE1 by Kruppel-like factor 2 is involved in DNA damage-induced apoptosis. Oncogene 24, 3875–3885 (2005).

    Article  CAS  Google Scholar 

  43. Bild, A.H. et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439, 353–357 (2006).

    Article  CAS  Google Scholar 

  44. Eichenberger, P. et al. The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol. 2, e328 (2004).

    Article  Google Scholar 

  45. Hoffmann, A., Leung, T.H. & Baltimore, D. Genetic analysis of NF-kappaB/Rel transcription factors defines functional specificities. EMBO J. 22, 5530–5539 (2003).

    Article  CAS  Google Scholar 

  46. Murphy, L.O., Smith, S., Chen, R.H., Fingar, D.C. & Blenis, J. Molecular interpretation of ERK signal duration by immediate early gene products. Nat. Cell Biol. 4, 556–564 (2002).

    Article  CAS  Google Scholar 

  47. Marshall, C.J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–185 (1995).

    Article  CAS  Google Scholar 

  48. Werner, S.L., Barken, D. & Hoffmann, A. Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science 309, 1857–1861 (2005).

    Article  CAS  Google Scholar 

  49. Levkowitz, G. et al. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol. Cell 4, 1029–1040 (1999).

    Article  CAS  Google Scholar 

  50. Stephenson, A.J. et al. Integration of gene expression profiling and clinical variables to predict prostate carcinoma recurrence after radical prostatectomy. Cancer 104, 290–298 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Blackshear, W. Lai, M. Kracht, J. Milbrandt, S. Friedman and G. Narla for reagents. We thank P. Luu, R. Malenka and N. Citri for instructive comments on the manuscript. We thank W.L. Gerald for providing us with the prostate cancer data set. The following plasmids were gifts: ZFP36-GFP from P. Blackshear (National Institutes of Health), an IL8 reporter plasmid from M. Kracht (Medical School Hannover), EGR1 reporter plasmid from J. Milbrandt (Washington University School of Medicine) and a STAT3 reporter plasmid from A. Gertler (Hebrew University). Our laboratory is supported by research grants from Minerva, the Israel Cancer Research Fund, the German Israel Foundation, the Prostate Cancer Foundation, the European Commission and the National Cancer Institute (grants CA72981, CA102537, CA65930, CA64602 and CA099031). Y.Y. is the incumbent of the Harold and Zelda Goldenberg Professorial Chair, and E.D. is the incumbent of the Henry J. Leir Professorial Chair. A.C. acknowledges support of the Human Frontier Science Program. E.D. was supported in part by the Ridgefield Foundation, the Israel Science Fund and the European Commission (EC FP6). Requests for materials should be addressed to Y.Y. (yosef.yarden@weizmann.ac.il).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yosef Yarden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Model illustrating circuitries of feedback regulation embedded in the EGF-induced transcriptional program. (PDF 188 kb)

Supplementary Fig. 2

Ligands and cytokines induced by EGF in HeLa cells. (PDF 62 kb)

Supplementary Fig. 3

The repressive functions of MAFF and KLF2 depend on integrity of their effector domains. (PDF 354 kb)

Supplementary Fig. 4

ZFP36 governs stability of EGF-induced transcripts. (PDF 529 kb)

Supplementary Fig. 5

EGF-induced ligands and cytokines are coordinately upregulated in tumors of ovarian patients. (PDF 79 kb)

Supplementary Fig. 6

EGF and serum induce different subsets of transcription regulators and cytokines in MCF10A cells. (PDF 74 kb)

Supplementary Fig. 7

Additional potential network motifs used by the EGF-induced transcriptional program. (PDF 68 kb)

Supplementary Table 1

Phosphoprotein and gene expression profiles of EGF-stimulated epithelial cells. (PDF 183 kb)

Supplementary Methods (PDF 110 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amit, I., Citri, A., Shay, T. et al. A module of negative feedback regulators defines growth factor signaling. Nat Genet 39, 503–512 (2007). https://doi.org/10.1038/ng1987

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1987

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing