Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The quantitative trait gene latexin influences the size of the hematopoietic stem cell population in mice

Abstract

We mapped quantitative trait loci that accounted for the variation in hematopoietic stem cell (HSC) numbers between young adult C57BL/6 (B6) and DBA/2 (D2) mice. In reciprocal chromosome 3 congenic mice, introgressed D2 alleles increased HSC numbers owing to enhanced proliferation and self-renewal and reduced apoptosis, whereas B6 alleles had the opposite effects. Using oligonucleotide arrays, real-time PCR and protein blots, we identified latexin (Lxn), a gene whose differential transcription and expression was associated with the allelic differences. Expression was inversely correlated with the number of HSCs; therefore, ectopic expression of Lxn using a retroviral vector decreased stem cell population size. We identified clusters of SNPs upstream of the Lxn transcriptional start site, at least two of which are associated with potential binding sites for transcription factors regulating stem cells. Thus, promoter polymorphisms between the B6 and D2 alleles may affect Lxn gene expression and consequently influence the population size of hematopoietic stem cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Linkage analysis and Chr3 congenic mouse strains.
Figure 2: HSC frequency in Chr3 congenic mice.
Figure 3: Replication, self-renewal and apoptosis analysis of Chr3 congenic HSCs.
Figure 4: Differential expression of Lxn in congenic, B6 and D2 mice.
Figure 5: QTL regulating Lxn expression.
Figure 6: Overexpression of Lxn decreases the number of HSCs.
Figure 7: SNPs in Lxn gene regulatory regions of B6 and D2 alleles.

Similar content being viewed by others

References

  1. Muller-Sieburg, C. & Riblet, R. Genetic control of the frequency of hematopoietic stem cells in mice: Mapping of a candidate locus to chromosome 1. J. Exp. Med. 183, 1141–1150 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. de Haan, G., Nijhof, W. & Van Zant, G. Mouse strain-dependent changes in frequency and proliferation of hematopoietic stem cells during aging: correlation between lifespan and cycling activity. Blood 89, 1543–1550 (1997).

    CAS  PubMed  Google Scholar 

  3. Chen, J., Astle, C.M. & Harrison, D.E. Genetic regulation of primitive hematopoietic stem cell senescence. Exp. Hematol. 28, 442–450 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Morrison, S.J. et al. A genetic determinant that specifically regulates the frequency of hematopoietic stem cells. J. Immunol. 168, 635–642 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Henckaerts, E. et al. Genetically determined variation in the number of phenotypically defined hematopoietic progenitor and stem cells and in their response to early-acting cytokines. Blood 99, 3947–3954 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. de Haan, G. & Van Zant, G. Intrinsic and extrinsic control of hemopoietic stem cell numbers: mapping of a stem cell gene. J. Exp. Med. 186, 529–536 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Van Zant, G., Holland, B.P., Eldridge, P.W. & Chen, J.-J. Genotype-restricted growth and aging patterns in hematopoietic stem cell populations of allophenic mice. J. Exp. Med. 171, 1547–1565 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Bailey, D. Recombinant-inbred strains, an aid to finding identity, linkage, and function of histocompatibility and other genes. Transplantation 11, 325–327 (1971).

    Article  CAS  PubMed  Google Scholar 

  9. de Haan, G. & Van Zant, G. Dynamic changes in mouse hematopoietic stem cell numbers during aging. Blood 93, 3294–3301 (1999).

    CAS  PubMed  Google Scholar 

  10. Geiger, H., Rennebeck, G. & Van Zant, G. Regulation of hematopoietic stem cell aging in vivo by a distinct genetic element. Proc. Natl. Acad. Sci. USA 102, 5102–5107 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. de Haan, G. & Van Zant, G. Genetic analysis of hemopoietic cell cycling in mice suggests its involvement in organismal life span. FASEB J. 13, 707–713 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Geiger, H., True, J.M., de Haan, G. & Van Zant, G. Age- and stage-specific regulation patterns in the hematopoietic stem cell hierarchy. Blood 98, 2966–2972 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Henckaerts, E., Langer, J.C., Orenstein, J. & Snoeck, H.W. The positive regulatory effect of TGF-beta2 on primitive murine hemopoietic stem and progenitor cells is dependent on age, genetic background, and serum factors. J. Immunol. 173, 2486–2493 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Liang, Y. & Van Zant, G. Genetic control of stem-cell properties and stem cells in aging. Curr. Opin. Hematol. 10, 195–202 (2003).

    Article  PubMed  Google Scholar 

  15. van der Sluijs, J.P., de Jong, J.P., Brons, N.H. & Ploemacher, R.E. Marrow repopulating cells, but not CFU-S, establish long-term in vitro hemopoiesis on a marrow-derived stromal layer. Exp. Hematol. 18, 893–896 (1990).

    CAS  PubMed  Google Scholar 

  16. Markel, P. et al. Theoretical and empirical issues for marker-assisted breeding of congenic mouse strains. Nat. Genet. 17, 280–284 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Wakeland, E., Morel, L., Achey, K., Yui, M. & Longmate, J. Speed congenics: a classic technique in the fast lane (relatively speaking). Immunol. Today 18, 472–477 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Yilmaz, O.H., Kiel, M.J. & Morrison, S.J. SLAM family markers are conserved among hematopoietic stem cells from old and reconstituted mice and markedly increase their purity. Blood 107, 924–930 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kiel, M.J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Szilvassy, S., Humphries, R., Lansdorp, P., Eaves, A. & Eaves, C. Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy. Proc. Natl. Acad. Sci. USA 87, 8736–8740 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bradford, G.B., Williams, B., Rossi, R. & Bertoncello, I. Quiescence, cycling, and turnover in the primitive hematopoietic stem cell compartment. Exp. Hematol. 25, 445–453 (1997).

    CAS  PubMed  Google Scholar 

  22. Cheshier, S.H., Morrison, S.J., Liao, X. & Weissman, I.L. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 96, 3120–3125 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Arimatsu, Y. et al. Early regional specification for a molecular neuronal phenotype in the rat neocortex. Proc. Natl. Acad. Sci. USA 89, 8879–8883 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Arimatsu, Y., Nihonmatsu, I., Hirata, K. & Takiguchi-Hayashi, K. Cogeneration of neurons with a unique molecular phenotype in layers V and VI of widespread lateral neocortical areas in the rat. J. Neurosci. 14, 2020–2031 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bystrykh, L. et al. Uncovering regulatory pathways that affect hematopoietic stem cell function using 'genetical genomics'. Nat. Genet. 37, 225–232 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Chesler, E.J. et al. Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat. Genet. 37, 233–242 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Flint, J. & Mott, R. Finding the molecular basis of quantitative traits: successes and pitfalls. Nat. Rev. Genet. 2, 437–445 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Arimatsu, Y. Latexin: a molecular marker for regional specification in the neocortex. Neurosci. Res. 20, 131–135 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Normant, E., Martres, M.P., Schwartz, J.C. & Gros, C. Purification, cDNA cloning, functional expression, and characterization of a 26-kDa endogenous mammalian carboxypeptidase inhibitor. Proc. Natl. Acad. Sci. USA 92, 12225–12229 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, Q. et al. Cloning, tissue expression pattern and genomic organization of latexin, a human homologue of rat carboxypeptidase A inhibitor. Mol. Biol. Rep. 27, 241–246 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Aagaard, A. et al. An inflammatory role for the mammalian carboxypeptidase inhibitor latexin: relationship to cystatins and the tumor suppressor TIG1. Structure 13, 309–317 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Callahan, G., Shridhar, V., Hartmann, L. & Smith, D. Characterization of a carboxypeptidase-A inhibitor identified by DD-PCR in primary ovarian tumors and cell lines. FASEB J., f637 (1999).

  33. Jin, M., Uratani, Y. & Arimatsu, Y. Mapping to mouse chromosome 3 of the gene encoding latexin (Lxn) expressed in neocortical neurons in a region-specific manner. Genomics 39, 419–421 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Youssef, E.M. et al. Hypermethylation and silencing of the putative tumor suppressor Tazarotene-induced gene 1 in human cancers. Cancer Res. 64, 2411–2417 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, J., Liu, L. & Pfeifer, G.P. Methylation of the retinoid response gene TIG1 in prostate cancer correlates with methylation of the retinoic acid receptor beta gene. Oncogene 23, 2241–2249 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Kwong, J. et al. Silencing of the retinoid response gene TIG1 by promoter hypermethylation in nasopharyngeal carcinoma. Int. J. Cancer 113, 386–392 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Jing, C. et al. Tazarotene-induced gene 1 (TIG1) expression in prostate carcinomas and its relationship to tumorigenicity. J. Natl. Cancer Inst. 94, 482–490 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Feinberg, A.P., Ohlsson, R. & Henikoff, S. The epigenetic progenitor origin of human cancer. Nat. Rev. Genet. 7, 21–33 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Androutsellis-Theotokis, A. et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442, 823–826 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Duncan, A.W. et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat. Immunol. 6, 314–322 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Geiger, H. & Van Zant, G. The aging of lympho-hematopoietic stem cells. Nat. Immunol. 3, 329–333 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Sauvageau, G. et al. Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev. 9, 1753–1765 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the flow cytometric expertise of B. Grimes, the technical assistance of C. Swiderski and the editorial assistance of P. Thomason. This work was supported by the US National Institutes of Health (grants AG020917, AG024950 and AG022859).

Author information

Authors and Affiliations

Authors

Contributions

Y.L. performed the majority of the experimental work in the course of her Ph.D. dissertation project, contributed to the design of the study and contributed to the writing of this paper. M.J. and B.A. contributed to the Lxn promoter SNP analyses and identification of potential regulatory sites. H.G. generated the congenic strains, carried out initial phenotyping of the congenics and contributed to the writing of this paper. G.V.Z. was largely responsible for the design of the study and writing of this paper.

Corresponding author

Correspondence to Gary Van Zant.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

CAFC day 35 numbers in B6, D2 nad BXD recombinant inbred strains. (PDF 44 kb)

Supplementary Table 2

Hematopoietic progenitor cells (HPCs) and peripheral blood cell counts in Chr3 congenic and background mouse strains. (PDF 54 kb)

Supplementary Table 3

Genes differentially expressed in LSK cells between B.D Chr3 congenic and B6 strains. (PDF 80 kb)

Supplementary Table 4

Genes differentially expressed in LSK cells between D.B Chr3 and D2 strains. (PDF 75 kb)

Supplementary Table 5

Confirmation of SNPs between B6 and D2 alleles in the regulatory region of Lxn. (PDF 60 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, Y., Jansen, M., Aronow, B. et al. The quantitative trait gene latexin influences the size of the hematopoietic stem cell population in mice. Nat Genet 39, 178–188 (2007). https://doi.org/10.1038/ng1938

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1938

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing