Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Population genomics of human gene expression

Abstract

Genetic variation influences gene expression, and this variation in gene expression can be efficiently mapped to specific genomic regions and variants. Here we have used gene expression profiling of Epstein-Barr virus–transformed lymphoblastoid cell lines of all 270 individuals genotyped in the HapMap Consortium to elucidate the detailed features of genetic variation underlying gene expression variation. We find that gene expression is heritable and that differentiation between populations is in agreement with earlier small-scale studies. A detailed association analysis of over 2.2 million common SNPs per population (5% frequency in HapMap) with gene expression identified at least 1,348 genes with association signals in cis and at least 180 in trans. Replication in at least one independent population was achieved for 37% of cis signals and 15% of trans signals, respectively. Our results strongly support an abundance of cis-regulatory variation in the human genome. Detection of trans effects is limited but suggests that regulatory variation may be the key primary effect contributing to phenotypic variation in humans. We also explore several methodologies that improve the current state of analysis of gene expression variation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Associations of SNPs with expression of the gene SPRED2 on chromosome 2.
Figure 2: Comparison of cis associations detected between single- and multipopulation analysis.
Figure 3: Comparison of the direction of shared SNP-gene allelic effects across all pairs of populations.
Figure 4: Properties of significant cis associations as a function of SNP distance from the transcription start site.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Ferrari, S.L. et al. Polymorphisms in the low-density lipoprotein receptor-related protein 5 (LRP5) gene are associated with variation in vertebral bone mass, vertebral bone size, and stature in whites. Am. J. Hum. Genet. 74, 866–875 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bansal, A. et al. Association testing by DNA pooling: an effective initial screen. Proc. Natl. Acad. Sci. USA 99, 16871–16874 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Mahley, R.W. & Huang, Y. Apolipoprotein E: from atherosclerosis to Alzheimer's disease and beyond. Curr. Opin. Lipidol. 10, 207–217 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Kleinjan, D.A. & van Heyningen, V. Long-range control of gene expression: emerging mechanisms and disruption in disease. Am. J. Hum. Genet. 76, 8–32 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Valentonyte, R. et al. Sarcoidosis is associated with a truncating splice site mutation in BTNL2. Nat. Genet. 37, 357–364 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Saxena, R. et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316, 1331–1336 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Zeggini, E. et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316, 1336–1341 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fanciulli, M. et al. FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity. Nat. Genet. 39, 721–723 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stankiewicz, P. & Lupski, J.R. Genome architecture, rearrangements and genomic disorders. Trends Genet. 18, 74–82 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Merla, G. et al. Submicroscopic deletion in patients with Williams-Beuren syndrome influences expression levels of the nonhemizygous flanking genes. Am. J. Hum. Genet. 79, 332–341 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li, M. et al. CFH haplotypes without the Y402H coding variant show strong association with susceptibility to age-related macular degeneration. Nat. Genet. 38, 1049–1054 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hirschhorn, J.N. & Daly, M.J. Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet. 6, 95–108 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Stranger, B.E. & Dermitzakis, E.T. The genetics of regulatory variation in the human genome. Hum. Genomics 2, 126–131 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stranger, B.E. & Dermitzakis, E.T. From DNA to RNA to disease and back: the 'central dogma' of regulatory disease variation. Hum. Genomics 2, 383–390 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Doss, S., Schadt, E.E., Drake, T.A. & Lusis, A.J. Cis-acting expression quantitative trait loci in mice. Genome Res. 15, 681–691 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cheung, V.G. et al. Mapping determinants of human gene expression by regional and genome-wide association. Nature 437, 1365–1369 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schadt, E.E. et al. Genetics of gene expression surveyed in maize, mouse and man. Nature 422, 297–302 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Stranger, B.E. et al. Genome-wide associations of gene expression variation in humans. PLoS Genet. 1, e78 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Stranger, B.E. et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315, 848–853 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Knight, J.C. Regulatory polymorphisms underlying complex disease traits. J. Mol. Med. 83, 97–109 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Monks, S.A. et al. Genetic inheritance of gene expression in human cell lines. Am. J. Hum. Genet. 75, 1094–1105 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. The International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

  23. The International HapMap Consortium. The phase II haplotype map of the human genome. Nature (in the press).

  24. Dunning, M.J., Smith, D.R., Thorne, N.P. & Tavare, S. beadarray: an R Package to analyse Illumina BeadArrays. R News 6, 17 (2006).

    Google Scholar 

  25. Dunning, M.J., Thorne, N.P., Camilier, I., Smith, M.L. & Tavare, S. Quality control and low-level statistical analysis of Illumina BeadArrays. Rev. Stat. 4, 1–30 (2006).

    Google Scholar 

  26. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Camon, E., Barrell, D., Lee, V., Dimmer, E. & Apweiler, R. The Gene Ontology Annotation (GOA) Database—an integrated resource of GO annotations to the UniProt Knowledgebase. In Silico Biol. 4, 5–6 (2004).

    PubMed  Google Scholar 

  28. Storey, J.D., Akey, J.M. & Kruglyak, L. Multiple locus linkage analysis of genomewide expression in yeast. PLoS Biol. 3, e267 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lee, S.I., Pe'er, D., Dudley, A.M., Church, G.M. & Koller, D. Identifying regulatory mechanisms using individual variation reveals key role for chromatin modification. Proc. Natl. Acad. Sci. USA 103, 14062–14067 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Koren, M. et al. ATM haplotypes and breast cancer risk in Jewish high-risk women. Br. J. Cancer 94, 1537–1543 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Hoogendoorn, B. et al. Functional analysis of polymorphisms in the promoter regions of genes on 22q11. Hum. Mutat. 24, 35–42 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Dermitzakis, E.T. et al. Evolutionary discrimination of mammalian conserved non-genic sequences (CNGs). Science 302, 1033–1035 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Drake, J.A. et al. Conserved noncoding sequences are selectively constrained and not mutation cold spots. Nat. Genet. 38, 223–227 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Bejerano, G. et al. Ultraconserved elements in the human genome. Science 304, 1321–1325 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Abbasi, A.A. et al. Human GLI3 intragenic conserved non-coding sequences are tissue-specific enhancers. PLoS ONE 2, e366 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Woolfe, A. et al. Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biol. 3, e7 (2005).

    Article  PubMed  Google Scholar 

  38. Brem, R.B. & Kruglyak, L. The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc. Natl. Acad. Sci. USA 102, 1572–1577 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Yvert, G. et al. Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nat. Genet. 35, 57–64 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Kuhn, K. et al. A novel, high-performance random array platform for quantitative gene expression profiling. Genome Res. 14, 2347–2356 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bolstad, B.M., Irizarry, R.A., Astrand, M. & Speed, T.P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Churchill, G.A. & Doerge, R.W. Empirical threshold values for quantitative trait mapping. Genetics 138, 963–971 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Doerge, R.W. & Churchill, G.A. Permutation tests for multiple loci affecting a quantitative character. Genetics 142, 285–294 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the HapMap Consortium for data availability; M. Smith for assistance with software development; and M. Gibbs, J. Orwick and C. Gerringer for technical support. Funding was provided by the Wellcome Trust (to E.T.D. and P.D.), the US National Institutes of Health ENDGAME (to E.T.D. and S.T.), Cancer Research UK (to S.T.), and the Medical Research Council (to M.D.). S.T. is a Royal Society Wolfson Research Merit Award holder.

Author information

Authors and Affiliations

Authors

Contributions

B.E.S. performed the majority of the analysis, coordinated the efforts on the project, performed part of the experimental work, and wrote part of the manuscript. E.T.D. and P.D. helped with the analysis, wrote part of the manuscript, and led the project. S.T. and M.D. performed the normalization and helped with statistical analysis. A.C.N., A.D., C.P.B., P.F. and S.M. performed specific parts of the analysis. M.S.F. helped with the analysis and performed part of the experimental work. C.E.I. performed most of the experimental work. C.B. wrote some of the scripts and performed part of the analysis. D.K. provided advice on the permutation analysis.

Corresponding authors

Correspondence to Panos Deloukas or Emmanouil T Dermitzakis.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–6, Supplementary Table 1, and Supplementary Methods (PDF 1606 kb)

Supplementary Table 2

Number and source category of SNPs used in trans analysis. (PDF 833 kb)

Supplementary Table 3

Significant cis- 1Mb associations, linear regression, individual population analysis, 0.001 permutation threshold. (PDF 1406 kb)

Supplementary Table 4

Significant cis- 1 Mb associations, linear regression, multiple population analysis, 0.001 permutation threshold. (PDF 647 kb)

Supplementary Table 5

Significant cis- 1Mb associations, Spearman rank correlation, individual population analysis, 0.001 permutation threshold. (PDF 27 kb)

Supplementary Table 6

Significant trans associations, linear regression, individual population analysis, 0.001 permutation threshold. (PDF 44 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stranger, B., Nica, A., Forrest, M. et al. Population genomics of human gene expression. Nat Genet 39, 1217–1224 (2007). https://doi.org/10.1038/ng2142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng2142

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing