Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

RNA interference machinery influences the nuclear organization of a chromatin insulator

Abstract

RNA interference (RNAi) is a conserved silencing mechanism that can act through alteration of chromatin structure. Chromatin insulators promote higher-order nuclear organization, thereby establishing DNA domains subject to distinct transcriptional controls. We present evidence for a functional relationship between RNAi and the gypsy insulator of D. melanogaster. Insulator activity is decreased when Argonaute genes required for RNAi are mutated, and insulator function is improved when the levels of the Rm62 helicase, involved in double-stranded RNA (dsRNA)-mediated silencing and heterochromatin formation, are reduced. Rm62 interacts physically with the DNA-binding insulator protein CP190 in an RNA-dependent manner. Finally, reduction of Rm62 levels results in marked nuclear reorganization of a compromised insulator. These results suggest that the RNAi machinery acts as a modulator of nuclear architecture capable of effecting global changes in gene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The insulator protein CP190 interacts with the RNA helicase Rm62 in an RNA-dependent manner.
Figure 2: Mutations in genes required for RNAi affect gypsy insulator function.
Figure 3: Localization of myc-Piwi and insulator proteins on polytene chromosomes.
Figure 4: Localization of insulator proteins on polytene chromosomes of RNAi mutants.
Figure 5: Insulator body nuclear organization is altered in RNAi mutants.
Figure 6: Model for how RNAi affects gypsy insulator chromatin domain formation.

Similar content being viewed by others

References

  1. Volpe, T.A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002).

    Article  CAS  Google Scholar 

  2. Pal-Bhadra, M. et al. Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303, 669–672 (2004).

    Article  CAS  Google Scholar 

  3. Hall, I.M., Noma, K. & Grewal, S.I. RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast. Proc. Natl. Acad. Sci. USA 100, 193–198 (2003).

    Article  CAS  Google Scholar 

  4. Grimaud, C. et al. RNAi components are required for nuclear clustering of Polycomb group response elements. Cell 124, 957–971 (2006).

    Article  CAS  Google Scholar 

  5. Parkhurst, S.M. et al. The Drosophila su(Hw) gene, which controls the phenotypic effect of the gypsy transposable element, encodes a putative DNA-binding protein. Genes Dev. 2, 1205–1215 (1988).

    Article  CAS  Google Scholar 

  6. Pai, C.Y., Lei, E.P., Ghosh, D. & Corces, V.G. The centrosomal protein CP190 is a component of the gypsy chromatin insulator. Mol. Cell 16, 737–748 (2004).

    Article  CAS  Google Scholar 

  7. Gerasimova, T.I., Gdula, D.A., Gerasimov, D.V., Simonova, O. & Corces, V.G. A Drosophila protein that imparts directionality on a chromatin insulator is an enhancer of position-effect variegation. Cell 82, 587–597 (1995).

    Article  CAS  Google Scholar 

  8. Gerasimova, T.I., Byrd, K. & Corces, V.G. A chromatin insulator determines the nuclear localization of DNA. Mol. Cell 6, 1025–1035 (2000).

    Article  CAS  Google Scholar 

  9. Capelson, M. & Corces, V.G. The ubiquitin ligase dTopors directs the nuclear organization of a chromatin insulator. Mol. Cell 20, 105–116 (2005).

    Article  CAS  Google Scholar 

  10. Byrd, K. & Corces, V.G. Visualization of chromatin domains created by the gypsy insulator of Drosophila. J. Cell Biol. 162, 565–574 (2003).

    Article  CAS  Google Scholar 

  11. Yusufzai, T.M. & Felsenfeld, G. The 5′-HS4 chicken beta-globin insulator is a CTCF-dependent nuclear matrix-associated element. Proc. Natl. Acad. Sci. USA 101, 8620–8624 (2004).

    Article  CAS  Google Scholar 

  12. Ishizuka, A., Siomi, M.C. & Siomi, H. A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev. 16, 2497–2508 (2002).

    Article  CAS  Google Scholar 

  13. Csink, A.K., Linsk, R. & Birchler, J.A. The Lighten up (Lip) gene of Drosophila melanogaster, a modifier of retroelement expression, position effect variegation and white locus insertion alleles. Genetics 138, 153–163 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Parkhurst, S.M. & Corces, V.G. Interactions among the gypsy transposable element and the yellow and the suppressor of hairy-wing loci in Drosophila melanogaster. Mol. Cell. Biol. 6, 47–53 (1986).

    Article  CAS  Google Scholar 

  15. Jack, J.W. Molecular organization of the cut locus of Drosophila melanogaster. Cell 42, 869–876 (1985).

    Article  CAS  Google Scholar 

  16. Tsai, S.F. et al. Gypsy retrotransposon as a tool for the in vivo analysis of the regulatory region of the optomotor-blind gene in Drosophila. Proc. Natl. Acad. Sci. USA 94, 3837–3841 (1997).

    Article  CAS  Google Scholar 

  17. Schupbach, T. & Wieschaus, E. Female sterile mutations on the second chromosome of Drosophila melanogaster. II. Mutations blocking oogenesis or altering egg morphology. Genetics 129, 1119–1136 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lin, H. & Spradling, A.C. A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development 124, 2463–2476 (1997).

    CAS  PubMed  Google Scholar 

  19. Forstemann, K. et al. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol. 3, e236 (2005).

    Article  Google Scholar 

  20. Saito, K., Ishizuka, A., Siomi, H. & Siomi, M.C. Processing of pre-microRNAs by the Dicer-1-Loquacious complex in Drosophila cells. PLoS Biol. 3, e235 (2005).

    Article  Google Scholar 

  21. Noma, K. et al. RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing. Nat. Genet. 36, 1174–1180 (2004).

    Article  CAS  Google Scholar 

  22. Cox, D.N., Chao, A. & Lin, H. piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. Development 127, 503–514 (2000).

    CAS  PubMed  Google Scholar 

  23. Pal-Bhadra, M., Bhadra, U. & Birchler, J.A. RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila. Mol. Cell 9, 315–327 (2002).

    Article  CAS  Google Scholar 

  24. Buszczak, M. & Spradling, A.C. The Drosophila P68 RNA helicase regulates transcriptional deactivation by promoting RNA release from chromatin. Genes Dev. 20, 977–989 (2006).

    Article  CAS  Google Scholar 

  25. Fey, E.G., Krochmalnic, G. & Penman, S. The nonchromatin substructures of the nucleus: the ribonucleoprotein (RNP)-containing and RNP-depleted matrices analyzed by sequential fractionation and resinless section electron microscopy. J. Cell Biol. 102, 1654–1665 (1986).

    Article  CAS  Google Scholar 

  26. Shaffer, C.D., Wuller, J.M. & Elgin, S.C.R. Methods in Cell Biology (Academic, San Diego, 1994).

    Google Scholar 

  27. Harlow, E. & Lane, D. Antibodies: A Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1988).

    Google Scholar 

  28. Mongelard, F., Labrador, M., Baxter, E.M., Gerasimova, T.I. & Corces, V.G. Trans-splicing as a novel mechanism to explain interallelic complementation in Drosophila. Genetics 160, 1481–1487 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mal'ceva, N.I., Belyaeva, E.S., King, R.C. & Zhimulev, I.F. Nurse cell polytene chromosomes of Drosophila melanogaster otu mutants: morphological changes accompanying interallelic complementation and position effect variegation. Dev. Genet. 20, 163–174 (1997).

    Article  CAS  Google Scholar 

  30. Amero, S.A., Elgin, S.C. & Beyer, A.L. A unique zinc finger protein is associated preferentially with active ecdysone-responsive loci in Drosophila. Genes Dev. 5, 188–200 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank A. Beyer for α-Pep and F. Fuller-Pace for α-p68; J. Birchler, S. Hou, H. Lin, and P. Macdonald for strains and Y. Zheng for fly cages. We are indebted to E. Baxter for assistance with population cages; M. Capelson and members of the Corces laboratory for discussions and J. Birchler, M. Capelson, and C. Karam for comments on the manuscript. E.P.L. is a fellow of The Jane Coffin Childs Memorial Fund for Medical Research. This work was supported by grants from the US National Institutes of Health to V.G.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor G Corces.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Localization of insulator proteins to a site of gypsy insertion in RNAi mutants. (PDF 217 kb)

Supplementary Fig. 2

Nuclear localization of Rm62 in diploid cells. (PDF 215 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, E., Corces, V. RNA interference machinery influences the nuclear organization of a chromatin insulator. Nat Genet 38, 936–941 (2006). https://doi.org/10.1038/ng1850

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1850

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing