Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutations in the CEL VNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction

Abstract

Dysfunction of the exocrine pancreas is observed in diabetes, but links between concurrent exocrine and endocrine pancreatic disease and contributing genetic factors are poorly characterized. We studied two families with diabetes and exocrine pancreatic dysfunction by genetic, physiological and in vitro functional studies. A genome-wide screen in Family 1 linked diabetes to chromosome 9q34 (maximal lod score 5.07). Using fecal elastase deficiency as a marker of exocrine pancreatic dysfunction refined the critical chromosomal region to 1.16 Mb (maximal lod score 11.6). Here, we identified a single-base deletion in the variable number of tandem repeats (VNTR)-containing exon 11 of the carboxyl ester lipase (CEL) gene, a major component of pancreatic juice and responsible for the duodenal hydrolysis of cholesterol esters. Screening subjects with maturity-onset diabetes of the young identified Family 2, with another single-base deletion in CEL and a similar phenotype with beta-cell failure and pancreatic exocrine disease. The in vitro catalytic activities of wild-type and mutant CEL protein were comparable. The mutant enzyme was, however, less stable and secreted at a lower rate. Furthermore, we found some evidence for an association between common insertions in the CEL VNTR and exocrine dysfunction in a group of 182 unrelated subjects with diabetes (odds ratio 4.2 (1.6, 11.5)). Our findings link diabetes to the disrupted function of a lipase in the pancreatic acinar cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pedigree of studied branches of Family 1.
Figure 2: Identification of the chromosomal region and gene causing autosomal dominant diabetes and pancreatic exocrine deficiency in Family 1.
Figure 3: Structure and variants of the CEL protein.
Figure 4: Defining pancreatic function in affected subjects in Family 1.
Figure 5: Pancreas structure and morphology.
Figure 6: Studies of the mutant CEL protein.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Henderson, J.R. Why are the islets of Langerhans? Lancet 2, 469–470 (1969).

    Article  CAS  Google Scholar 

  2. Cavalot, F. et al. Pancreatic elastase-1 in stools, a marker of exocrine pancreas function, correlates with both residual beta-cell secretion and metabolic control in type 1 diabetic subjects. Diabetes Care 27, 2052–2054 (2004).

    Article  Google Scholar 

  3. Mitchell, R.M., Byrne, M.F. & Baillie, J. Pancreatitis. Lancet 361, 1447–1455 (2003).

    Article  CAS  Google Scholar 

  4. Wang, F., Herrington, M., Larsson, J. & Permert, J. The relationship between diabetes and pancreatic cancer. Mol. Cancer 2, 4 (2003).

    Article  Google Scholar 

  5. Lombardo, F. et al. Natural history of glucose tolerance, beta-cell function and peripheral insulin sensitivity in cystic fibrosis patients with fasting euglycemia. Eur. J. Endocrinol. 149, 53–59 (2003).

    Article  CAS  Google Scholar 

  6. Stoffers, D.A., Zinkin, N.T., Stanojevic, V., Clarke, W.L. & Habener, J.F. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat. Genet. 15, 106–110 (1997).

    Article  CAS  Google Scholar 

  7. Sellick, G.S. et al. Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat. Genet. 36, 1301–1305 (2004).

    Article  CAS  Google Scholar 

  8. Bellanne-Chantelot, C. et al. Clinical spectrum associated with hepatocyte nuclear factor-1beta mutations. Ann. Intern. Med. 140, 510–517 (2004).

    Article  CAS  Google Scholar 

  9. Haumaitre, C. et al. Lack of TCF2/vHNF1 in mice leads to pancreas agenesis. Proc. Natl. Acad. Sci. USA 102, 1490–1495 (2005).

    Article  CAS  Google Scholar 

  10. Edlund, H. Pancreatic organogenesis – developmental mechanisms and implications for therapy. Nat. Rev. Genet. 3, 524–532 (2002).

    Article  CAS  Google Scholar 

  11. Hardt, P.D. et al. High prevalence of exocrine pancreatic insufficiency in diabetes mellitus. A multicenter study screening fecal elastase 1 concentrations in 1,021 diabetic patients. Pancreatology 3, 395–402 (2003).

    Article  Google Scholar 

  12. Fajans, S.S., Bell, G.I. & Polonsky, K.S. Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N. Engl. J. Med. 345, 971–980 (2001).

    Article  CAS  Google Scholar 

  13. Bengtsson-Ellmark, S.H. et al. Association between a polymorphism in the carboxyl ester lipase gene and serum cholesterol profile. Eur. J. Hum. Genet. 12, 627–632 (2004).

    Article  CAS  Google Scholar 

  14. Lindquist, S., Bläckberg, L. & Hernell, O. Human bile salt-stimulated lipase has a high frequency of size variation due to a hypervariable region in exon 11. Eur. J. Biochem. 269, 759–767 (2002).

    Article  CAS  Google Scholar 

  15. Higuchi, S., Nakamura, Y. & Saito, S. Characterization of a VNTR polymorphism in the coding region of the CEL gene. J. Hum. Genet. 47, 213–215 (2002).

    Article  CAS  Google Scholar 

  16. Bjørkhaug, L. et al. Hepatocyte nuclear factor-1 alpha gene mutations and diabetes in Norway. J. Clin. Endocrinol. Metab. 88, 920–931 (2003).

    Article  Google Scholar 

  17. Harding, H.P. & Ron, D. Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes 51 (Suppl.) 3, S455–S461 (2002).

    Article  CAS  Google Scholar 

  18. Kim, S.K. et al. Pbx1 inactivation disrupts pancreas development and in Ipf1-deficient mice promotes diabetes mellitus. Nat. Genet. 30, 430–435 (2002).

    Article  CAS  Google Scholar 

  19. Iglesias, A. et al. Diabetes and exocrine pancreatic insufficiency in E2F1/E2F2 double-mutant mice. J. Clin. Invest. 113, 1398–1407 (2004).

    Article  CAS  Google Scholar 

  20. Lombardo, D. Bile salt-dependent lipase: its pathophysiological implications. Biochim. Biophys. Acta 1533, 1–28 (2001).

    Article  CAS  Google Scholar 

  21. Hui, D.Y. & Howles, P.N. Carboxyl ester lipase: structure-function relationship and physiological role in lipoprotein metabolism and atherosclerosis. J. Lipid Res. 43, 2017–2030 (2002).

    Article  CAS  Google Scholar 

  22. Poorkhalkali, N. et al. Bile salt-stimulated lipase (BSSL) distribution in rat, mouse and transgenic mouse expressing human BSSL. Histochem. Cell Biol. 110, 367–376 (1998).

    Article  CAS  Google Scholar 

  23. Auge, N. et al. Pancreatic bile salt-dependent lipase induces smooth muscle cells proliferation. Circulation 108, 86–91 (2003).

    Article  CAS  Google Scholar 

  24. DiPersio, L.P., Fontaine, R.N. & Hui, D.Y. Identification of the active site serine in pancreatic cholesterol esterase by chemical modification and site-specific mutagenesis. J. Biol. Chem. 265, 16801–16806 (1990).

    CAS  PubMed  Google Scholar 

  25. Aubert, E., Sbarra, V., Le Petit-Thevenin, J., Valette, A. & Lombardo, D. Site-directed mutagenesis of the basic N-terminal cluster of pancreatic bile salt-dependent lipase. Functional significance. J. Biol. Chem. 277, 34987–34996 (2002).

    Article  CAS  Google Scholar 

  26. Aubert-Jousset, E., Sbarra, V. & Lombardo, D. Site-directed mutagenesis of the distal basic cluster of pancreatic bile salt-dependent lipase. J. Biol. Chem. 279, 39697–39704 (2004).

    Article  CAS  Google Scholar 

  27. Downs, D., Xu, Y.Y., Tang, J. & Wang, C.S. Proline-rich domain and glycosylation are not essential for the enzymic activity of bile salt-activated lipase. Kinetic studies of T-BAL, a truncated form of the enzyme, expressed in Escherichia coli. Biochemistry 33, 7979–7985 (1994).

    Article  CAS  Google Scholar 

  28. Gleghorn, L., Ramesar, R., Beighton, P. & Wallis, G. A mutation in the variable repeat region of the aggrecan gene (AGC1) causes a form of spondyloepiphyseal dysplasia associated with severe, premature osteoarthritis. Am. J. Hum. Genet. 77, 484–490 (2005).

    Article  CAS  Google Scholar 

  29. Howles, P.N., Carter, C.P. & Hui, D.Y. Dietary free and esterified cholesterol absorption in cholesterol esterase (bile salt-stimulated lipase) gene-targeted mice. J. Biol. Chem. 271, 7196–7202 (1996).

    Article  CAS  Google Scholar 

  30. Weng, W. et al. Intestinal absorption of dietary cholesteryl ester is decreased but retinyl ester absorption is normal in carboxyl ester lipase knockout mice. Biochemistry 38, 4143–4149 (1999).

    Article  CAS  Google Scholar 

  31. Herman, G.E. Mouse models of human disease: lessons learned and promises to come. ILAR J. 43, 55–56 (2002).

    Article  CAS  Google Scholar 

  32. Panicot, L., Mas, E., Thivolet, C. & Lombardo, D. Circulating antibodies against an exocrine pancreatic enzyme in type 1 diabetes. Diabetes 48, 2316–2323 (1999).

    Article  CAS  Google Scholar 

  33. Lillioja, S. et al. Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective studies of Pima Indians. N. Engl. J. Med. 329, 1988–1992 (1993).

    Article  CAS  Google Scholar 

  34. Goda, K. et al. Pancreatic volume in type 1 and type 2 diabetes mellitus. Acta Diabetol. 38, 145–149 (2001).

    Article  CAS  Google Scholar 

  35. Vaxillaire, M. et al. A gene for maturity onset diabetes of the young (MODY) maps to chromosome 12q. Nat. Genet. 9, 418–423 (1995).

    Article  CAS  Google Scholar 

  36. Icks, A., Haastert, B., Giani, G. & Rathmann, W. Low fecal elastase-1 in type I diabetes mellitus. Z. Gastroenterol. 39, 823–830 (2001).

    Article  CAS  Google Scholar 

  37. Rathmann, W. et al. Low faecal elastase 1 concentrations in type 2 diabetes mellitus. Scand. J. Gastroenterol. 36, 1056–1061 (2001).

    Article  CAS  Google Scholar 

  38. Verine, A., Le Petit-Thevenin, J., Panicot-Dubois, L., Valette, A. & Lombardo, D. Phosphorylation of the oncofetal variant of the human bile salt-dependent lipase. identification of phosphorylation site and relation with secretion process. J. Biol. Chem. 276, 12356–12361 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Bindoff, G. Eide, G. Fluge and H. Immervoll for discussions; L. Marselli and G. Weir for sharing unpublished information; S. Aanderud and E. Husebye for providing outpatients; B.H. Berge and L. Aasmul for technical assistance; E. Aubert-Jousset for catalytic constant determinations; B. Mallet and L. Benkoel for assays of C-reactive protein, and orosomucoid and immunohistochemistry experiments, respectively; and the families involved in the study. This work was supported in part by funds from Helse Vest, Haukeland University Hospital and Innovest (to the Department of Pediatrics, Haukeland University Hospital, Bergen), from the University of Bergen, the Meltzer Foundation, Norwegian Diabetes Association and Health & Rehabilitation (to the Institute of Clinical Medicine, University of Bergen, Bergen, Norway) and from INSERM and the Université de la Méditerranée (to the INSERM U-559, Marseille, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pål Rasmus Njølstad.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Pedigree of studied branches of Family 2. (PDF 20 kb)

Supplementary Fig. 2

Pancreas morphology investigated by abdominal CT. (PDF 116 kb)

Supplementary Fig. 3

Sequencing a CEL polymorphism to investigate mutant CEL expression in fibroblasts. (PDF 63 kb)

Supplementary Table 1

Markers with two-point lod scores >1.17 (P < 0.01) in the genome scan of the core pedigree of 61 subjects in Family 1. (PDF 16 kb)

Supplementary Table 2

Two-point lod scores at different theta values between diabetes or elastase deficiency and chromosome 9 saturation markers in the extended pedigree of 184 subjects in Family 1. (PDF 74 kb)

Supplementary Table 3

Clinical characteristics of patients in Family 1 with mutation in CEL. (PDF 21 kb)

Supplementary Table 4

Clinical characteristics of patients in Family 2 with mutation in CEL. (PDF 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ræder, H., Johansson, S., Holm, P. et al. Mutations in the CEL VNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction. Nat Genet 38, 54–62 (2006). https://doi.org/10.1038/ng1708

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1708

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing