Journal home
Advance online publication
Current issue
Archive
Press releases
Free Association (blog)
Supplements
Focuses
Guide to authors
Online submissionOnline submission
For referees
Free online issue
Contact the journal
Subscribe
Advertising
work@npg
Reprints and permissions
About this site
For librarians
 
NPG Resources
Nature
Nature Biotechnology
Nature Cell Biology
Nature Medicine
Nature Methods
Nature Reviews Cancer
Nature Reviews Genetics
Nature Reviews Molecular Cell Biology
news@nature.com
Nature Conferences
RNAi Gateway
NPG Subject areas
Biotechnology
Cancer
Chemistry
Clinical Medicine
Dentistry
Development
Drug Discovery
Earth Sciences
Evolution & Ecology
Genetics
Immunology
Materials Science
Medical Research
Microbiology
Molecular Cell Biology
Neuroscience
Pharmacology
Physics
Browse all publications
Article
Nature Genetics - 37, 809 - 819 (2005)
Published online: 24 June 2005; | doi:10.1038/ng1602


There is an Addendum (November 2013) associated with this Article.

Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome

Hugh P Cam1, Tomoyasu Sugiyama1, Ee Sin Chen1, Xi Chen1, Peter C FitzGerald2 & Shiv I S Grewal1

1  Laboratory of Molecular Cell Biology, National Institutes of Health, Bethesda, Maryland 20892-4255, USA.

2  Genome Analysis Unit, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, USA.

Correspondence should be addressed to Shiv I S Grewal grewals@mail.nih.gov

The organization of eukaryotic genomes into distinct structural and functional domains is important for the regulation and transduction of genetic information. Here, we investigated heterochromatin and euchromatin profiles of the entire fission yeast genome and explored the role of RNA interference (RNAi) in genome organization. Histone H3 methylated at Lys4, which defines euchromatin, was not only distributed across most of the chromosomal landscape but was also present at the centromere core, the site of kinetochore assembly. In contrast, histone H3 methylated at Lys9 and its interacting protein Swi6/HP1, which define heterochromatin, coated extended domains associated with a variety of repeat elements and small islands corresponding to meiotic genes. Notably, RNAi components were distributed throughout all these heterochromatin domains, and their localization depended on Clr4/Suv39h histone methyltransferase. Sequencing of small interfering RNAs (siRNAs) associated with the RITS RNAi effector complex identified hot spots of siRNAs, which mapped to a diverse array of elements in these RNAi-heterochromatin domains. We found that Clr4/Suv39h predominantly silenced repeat elements whose derived transcripts, transcribed mainly by RNA polymerase II, serve as a source for siRNAs. Our analyses also uncover an important role for the RNAi machinery in maintaining genomic integrity.

REFERENCES
  1. Noma, K., Allis, C.D. & Grewal, S.I.S. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293, 1150–1155 (2001). | Article | PubMed | ISI | ChemPort |
  2. Litt, M.D., Simpson, M., Gaszner, M., Allis, C.D. & Felsenfeld, G. Correlation between histone lysine methylation and developmental changes at the chicken beta-globin locus. Science 293, 2453–2455 (2001). | Article | PubMed | ISI | ChemPort |
  3. Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599 (2000). | Article | PubMed | ISI | ChemPort |
  4. Nakayama, J., Rice, J.C., Strahl, B.D., Allis, C.D. & Grewal, S.I.S. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110–113 (2001). | Article | PubMed | ChemPort |
  5. Bannister, A.J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001). | Article | PubMed | ISI | ChemPort |
  6. Hall, I.M. et al. Establishment and maintenance of a heterochromatin domain. Science 297, 2232–2237 (2002). | Article | PubMed | ISI | ChemPort |
  7. Lachner, M., O'Sullivan, R.J. & Jenuwein, T. An epigenetic road map for histone lysine methylation. J. Cell Sci. 116, 2117–2124 (2003). | Article | PubMed | ISI | ChemPort |
  8. Grewal, S.I. & Rice, J.C. Regulation of heterochromatin by histone methylation and small RNAs. Curr. Opin. Cell Biol. 16, 230–238 (2004). | Article | PubMed | ISI | ChemPort |
  9. Mochizuki, K. & Gorovsky, M.A. Small RNAs in genome rearrangement in Tetrahymena. Curr. Opin. Genet. Dev. 14, 181–187 (2004). | Article | PubMed | ISI | ChemPort |
  10. Chan, S.W., Henderson, I.R. & Jacobsen, S.E. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat. Rev. Genet. 6, 351–360 (2005). | Article | PubMed | ISI | ChemPort |
  11. Matzke, M.A. & Birchler, J.A. RNAi-mediated pathways in the nucleus. Nat. Rev. Genet. 6, 24–35 (2005). | Article | PubMed | ISI | ChemPort |
  12. Volpe, T.A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002). | Article | PubMed | ISI | ChemPort |
  13. Verdel, A. et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672–676 (2004). | Article | PubMed | ISI | ChemPort |
  14. Noma, K. et al. RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing. Nat. Genet. 36, 1174–1180 (2004). | Article | PubMed | ISI | ChemPort |
  15. Motamedi, M.R. et al. Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell 119, 789–802 (2004). | Article | PubMed | ISI | ChemPort |
  16. Sugiyama, T., Cam, H., Verdel, A., Moazed, D. & Grewal, S.I.S. RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production. Proc. Natl. Acad. Sci. USA 102, 152–157 (2005). | Article | PubMed | ChemPort |
  17. Lippman, Z. et al. Role of transposable elements in heterochromatin and epigenetic control. Nature 430, 471–476 (2004). | Article | PubMed | ISI | ChemPort |
  18. Martens, J.H. et al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J. 24, 800–812 (2005). | Article | PubMed | ISI | ChemPort |
  19. Wood, V. et al. The genome sequence of Schizosaccharomyces pombe. Nature 415, 871–880 (2002). | Article | PubMed | ISI | ChemPort |
  20. Sadaie, M., Iida, T., Urano, T. & Nakayama, J. A chromodomain protein, Chp1, is required for the establishment of heterochromatin in fission yeast. EMBO J. 23, 3825–3835 (2004). | Article | PubMed | ISI | ChemPort |
  21. Schramke, V. & Allshire, R. Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin-based gene silencing. Science 301, 1069–1074 (2003). | Article | PubMed | ISI | ChemPort |
  22. Nielsen, S.J. et al. Rb targets histone H3 methylation and HP1 to promoters. Nature 412, 561–565 (2001). | Article | PubMed | ISI | ChemPort |
  23. Jia, S., Yamada, T. & Grewal, S.I.S. Heterochromatin regulates cell type-specific long-range chromatin interactions essential for directed recombination. Cell 119, 469–480 (2004). | Article | PubMed | ISI | ChemPort |
  24. Partridge, J.F., Borgstrom, B. & Allshire, R.C. Distinct protein interaction domains and protein spreading in a complex centromere. Genes Dev. 14, 783–791 (2000). | PubMed | ISI | ChemPort |
  25. Takahashi, K., Chen, E.S. & Yanagida, M. Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast. Science 288, 2215–2219 (2000). | Article | PubMed | ISI | ChemPort |
  26. Henikoff, S., Ahmad, K., Platero, J.S. & van Steensel, B. Heterochromatic deposition of centromeric histone H3-like proteins. Proc. Natl. Acad. Sci. USA 97, 716–721 (2000). | Article | PubMed | ChemPort |
  27. Mandell, J.G., Bahler, J., Volpe, T.A., Martienssen, R.A. & Cech, T.R. Global expression changes resulting from loss of telomeric DNA in fission yeast. Genome Biol. 6, R1 (2005). | PubMed |
  28. Thon, G. & Verhein-Hansen, J. Four chromo-domain proteins of Schizosaccharomyces pombe differentially repress transcription at various chromosomal locations. Genetics 155, 551–568 (2000). | PubMed | ISI | ChemPort |
  29. Shankaranarayana, G.D., Motamedi, M.R., Moazed, D. & Grewal, S.I.S. Sir2 regulates histone H3 lysine 9 methylation and heterochromatin assembly in fission yeast. Curr. Biol. 13, 1240–1246 (2003). | Article | PubMed | ISI | ChemPort |
  30. Hansen, K.R. et al. Global effects on gene expression in fission yeast by silencing and RNA interference machineries. Mol. Cell. Biol. 25, 590–601 (2005). | Article | PubMed | ChemPort |
  31. Bowen, N.J., Jordan, I.K., Epstein, J.A., Wood, V. & Levin, H.L. Retrotransposons and their recognition of pol II promoters: a comprehensive survey of the transposable elements from the complete genome sequence of Schizosaccharomyces pombe. Genome Res. 13, 1984–1997 (2003). | Article | PubMed | ChemPort |
  32. Sullivan, B.A. & Karpen, G.H. Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat. Struct. Mol. Biol. 11, 1076–1083 (2004). | Article | PubMed | ISI | ChemPort |
  33. Petrie, V.J., Wuitschick, J.D., Givens, C.D., Kosinski, A.M. & Partridge, J.F. RNA interference (RNAi)-dependent and RNAi-independent association of the Chp1 chromodomain protein with distinct heterochromatic loci in fission yeast. Mol. Cell. Biol. 25, 2331–2346 (2005). | Article | PubMed | ChemPort |
  34. Baulcombe, D. RNA silencing in plants. Nature 431, 356–363 (2004). | Article | PubMed | ISI | ChemPort |
  35. Llave, C., Kasschau, K.D., Rector, M.A. & Carrington, J.C. Endogenous and silencing-associated small RNAs in plants. Plant Cell 14, 1605–1619 (2002). | Article | PubMed | ISI | ChemPort |
  36. Aravin, A.A. et al. The small RNA profile during Drosophila melanogaster development. Dev. Cell 5, 337–350 (2003). | Article | PubMed | ISI | ChemPort |
  37. Schwarz, D.S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208 (2003). | Article | PubMed | ISI | ChemPort |
  38. Tomari, Y., Matranga, C., Haley, B., Martinez, N. & Zamore, P.D. A protein sensor for siRNA asymmetry. Science 306, 1377–1380 (2004). | Article | PubMed | ISI | ChemPort |
  39. Reinhart, B.J. & Bartel, D.P. Small RNAs correspond to centromere heterochromatic repeats. Science 297, 1831 (2002). | Article | PubMed | ISI | ChemPort |
  40. Jia, S., Noma, K. & Grewal, S.I.S. RNAi-independent heterochromatin nucleation by the stress-activated ATF/CREB family proteins. Science 304, 1971–1976 (2004). | Article | PubMed | ISI | ChemPort |
  41. Kanoh, J. & Ishikawa, F. spRap1 and spRif1, recruited to telomeres by Taz1, are essential for telomere function in fission yeast. Curr. Biol. 11, 1624–1630 (2001). | Article | PubMed | ISI | ChemPort |
  42. Xie, Z. et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2, E104 (2004). | Article | PubMed |
  43. Sijen, T. & Plasterk, R.H. Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature 426, 310–314 (2003). | Article | PubMed | ISI | ChemPort |
  44. Hall, I.M., Noma, K. & Grewal, S.I.S. RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast. Proc. Natl. Acad. Sci. USA 100, 193–198 (2003). | Article | PubMed | ChemPort |
  45. Maison, C. et al. Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat. Genet. 30, 329–334 (2002). | Article | PubMed | ISI |
  46. Herr, A.J., Jensen, M.B., Dalmay, T. & Baulcombe, D.C. RNA polymerase IV directs silencing of endogenous DNA. Science 308, 118–120 (2005). | Article | PubMed | ChemPort |
  47. Onodera, Y. et al. Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell 120, 613–622 (2005). | Article | PubMed | ISI | ChemPort |
  48. Kanno, T. et al. Atypical RNA polymerase subunits required for RNA-directed DNA methylation. Nat. Genet., advance online publication 29 May 2005 (doi: 10.1038/ng1580). | Article | PubMed | ChemPort |
  49. Elbashir, S.M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188–200 (2001). | Article | PubMed | ISI | ChemPort |
 Top

MORE ARTICLES LIKE THIS

These links to content published by NPG are automatically generated.

REVIEWS

Heterochromatin revisited

Nature Reviews Genetics Review (01 Jan 2007)

See all 26 matches for Reviews

NEWS AND VIEWS

RNA interference on chromosomes

Nature Genetics News and Views (01 Nov 2004)

RNA interference: RISCing chromatin silence

Nature Cell Biology News and Views (01 Sep 2003)

See all 6 matches for News And Views
 Top
Abstract
Previous | Next
Table of contents
Download PDFDownload PDF
Send to a friendSend to a friend
rights and permissionsRights and permissions
CrossRef lists 216 articles citing this articleCrossRef lists 216 articles citing this article
Save this linkSave this link
References
Supplementary info
Export citation
Export references

natureevents

natureproducts

Search buyers guide:

 
Nature Genetics
ISSN: 1061-4036
EISSN: 1546-1718
Journal home | Advance online publication | Current issue | Archive | Press releases | Supplements | Focuses | For authors | Online submission | Permissions | For referees | Free online issue | About the journal | Contact the journal | Subscribe | Advertising | work@npg | naturereprints | About this site | For librarians
Nature Publishing Group, publisher of Nature, and other science journals and reference works©2005 Nature Publishing Group | Privacy policy