Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Complement factor 5 is a quantitative trait gene that modifies liver fibrogenesis in mice and humans

Abstract

Fibrogenesis or scarring of the liver is a common consequence of all chronic liver diseases. Here we refine a quantitative trait locus that confers susceptibility to hepatic fibrosis by in silico mapping and show, using congenic mice and transgenesis with recombined artificial chromosomes, that the gene Hc (encoding complement factor C5) underlies this locus. Small molecule inhibitors of the C5a receptor had antifibrotic effects in vivo, and common haplotype-tagging polymorphisms of the human gene C5 were associated with advanced fibrosis in chronic hepatitis C virus infection. Thus, the mouse quantitative trait gene led to the identification of an unknown gene underlying human susceptibility to liver fibrosis, supporting the idea that C5 has a causal role in fibrogenesis across species.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fine mapping of the fibrogenic QTL on chromosome 2 by in silico haplotype analysis using 143 SNPs with an average distance of 313 kb between microsatellite markers D2Mit6 (20.9 Mb) and D2Mit90 (65.6 Mb).
Figure 2: Phenotypic characterization of liver fibrosis in inbred mouse strains and Hc BAC-transgenic mice before and after treatment with CCl4 for 6 weeks.
Figure 3: Expression of C5R1 in rat HSCs.
Figure 4: Phenotypic characterization of CCl4-induced liver fibrosis in mice treated with C5a receptor antagonists (C5R1A).
Figure 5: Association of C5 haplotypes and genotypes with histological stages of liver fibrosis in 277 individuals with chronic HCV infection.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Poynard, T., Yuen, M.F., Ratziu, V. & Lai, C.L. Viral hepatitis C. Lancet 362, 2095–2100 (2003).

    Article  CAS  Google Scholar 

  2. Friedman, S.L. Liver fibrosis - from bench to bedside. J. Hepatol. 38, S38–S53 (2003).

    Article  Google Scholar 

  3. Poynard, T., Bedossa, P. & Opolon, P. Natural history of liver fibrosis progression in patients with chronic hepatitis C. Lancet 349, 825–832 (1997).

    Article  CAS  Google Scholar 

  4. Bataller, R. & Brenner, D.A. Liver fibrosis. J. Clin. Invest. 115, 209–218 (2005).

    Article  CAS  Google Scholar 

  5. Hillebrandt, S., Goos, C., Matern, S. & Lammert, F. Genome-wide analysis of hepatic fibrosis in inbred mice identifies the susceptibility locus Hfib1 on chromosome 15. Gastroenterology 123, 2041–2051 (2002).

    Article  CAS  Google Scholar 

  6. Shi, Z., Wakil, A.E. & Rockey, D.C. Strain-specific differences in mouse hepatic wound healing are mediated by divergent T helper cytokine responses. Proc. Natl. Acad. Sci. USA 94, 10663–10668 (1997).

    Article  CAS  Google Scholar 

  7. Complex Trait Consortium. The nature and identification of quantitative trait loci: a community's view. Nat. Rev. Genet. 4, 911–916 (2003).

  8. Pletcher, M.T. et al. Use of a dense single nucleotide polymorphism map for in silico mapping in the mouse. PLoS Biol. 2, e393 (2004).

    Article  Google Scholar 

  9. Wetsel, R.A., Fleischer, D.T. & Haviland, D.L. Deficiency of the murine fifth complement component (C5). A 2-base pair gene deletion in a 5′-exon. J. Biol. Chem. 265, 2435–2440 (1990).

    CAS  PubMed  Google Scholar 

  10. Churchill, G.A. & Doerge, R.W. Empirical threshold values for quantitative trait mapping. Genetics 138, 963–971 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zondervan, K.T. & Cardon, L.R. The complex interplay among factors that influence allelic association. Nat. Rev. Genet. 5, 89–100 (2004).

    Article  CAS  Google Scholar 

  12. Zhang, Y., Buchholz, F., Muyrers, J.P. & Stewart, A.F. A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet. 20, 123–128 (1998).

    Article  CAS  Google Scholar 

  13. Köhl, J. Anaphylatoxins and infectious and non-infectious inflammatory diseases. Mol. Immunol. 38, 175–187 (2001).

    Article  Google Scholar 

  14. Schlaf, G. et al. Expression and induction of anaphylatoxin C5a receptors in the rat liver. Histol. Histopathol. 18, 299–308 (2003).

    CAS  PubMed  Google Scholar 

  15. Friedman, S.L. Mechanisms of disease: mechanisms of hepatic fibrosis and therapeutic implications. Nat. Clin. Pract. Gastroenterol. Hepatol. 1, 98–105 (2004).

    Article  Google Scholar 

  16. Konteatis, Z.D. et al. Development of C5a receptor antagonists. Differential loss of functional responses. J. Immunol. 153, 4200–4205 (1994).

    CAS  PubMed  Google Scholar 

  17. Strey, C.W. et al. The proinflammatory mediators C3a and C5a are essential for liver regeneration. J. Exp. Med. 198, 913–923 (2003).

    Article  CAS  Google Scholar 

  18. Walport, M.J. Complement. Second of two parts. N. Engl. J. Med. 344, 1140–1144 (2001).

    Article  CAS  Google Scholar 

  19. Whaley, K. & Schwaeble, W. Complement and complement deficiencies. Semin. Liver Dis. 17, 297–310 (1997).

    Article  CAS  Google Scholar 

  20. Ellison, R.T., Horsburgh, C.R. & Curd, J. Complement levels in patients with hepatic dysfunction. Dig. Dis. Sci. 35, 231–235 (1990).

    Article  Google Scholar 

  21. Flint, J., Valdar, W., Shifman, S. & Mott, R. Strategies for mapping and cloning quantitative trait genes in rodents. Nat. Rev. Genet. 6, 271–284 (2005).

    Article  CAS  Google Scholar 

  22. The International HapMap Consortium. The International HapMap Project. Nature 426, 789–796 (2003).

  23. Wasmuth, H.E., Matern, S. & Lammert, F. From genotypes to haplotypes in hepatobiliary diseases: one plus one equals (sometimes) more than two. Hepatology 39, 604–607 (2004).

    Article  Google Scholar 

  24. Smithies, O. Many little things: one geneticist's view of complex diseases. Nat. Rev. Genet. 6, 419–425 (2005).

    Article  CAS  Google Scholar 

  25. Neumann, U.P. et al. Fibrosis progression after liver transplantation in patients with recurrent hepatitis C. J. Hepatol. 41, 830–836 (2004).

    Article  CAS  Google Scholar 

  26. Czermak, B.J. et al. Role of complement in in vitro and in vivo lung inflammatory reactions. J. Leukoc. Biol. 64, 40–48 (1998).

    Article  CAS  Google Scholar 

  27. Phan, S.H. & Thrall, R.S. Inhibition of bleomycin-induced pulmonary fibrosis by cobra venom factor. Am. J. Pathol. 107, 25–28 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sheerin, N.S. & Sacks, S.H. Leaked protein and interstitial damage in the kidney: is complement the missing link? Clin. Exp. Immunol. 130, 1–3 (2002).

    Article  CAS  Google Scholar 

  29. Finch, A.M. et al. Low-molecular-weight peptidic and cyclic antagonists of the receptor for the complement factor C5a. J. Med. Chem. 42, 1965–1974 (1999).

    Article  CAS  Google Scholar 

  30. Mastellos, D., Papadimitriou, J.C., Franchini, S., Tsonis, P.A. & Lambris, J.D. A novel role of complement: mice deficient in the fifth component of complement (C5) exhibit impaired liver regeneration. J. Immunol. 166, 2479–2486 (2001).

    Article  CAS  Google Scholar 

  31. Huber-Lang, M.S. et al. Protection of innate immunity by C5aR antagonist in septic mice. FASEB J. 16, 1567–1574 (2002).

    Article  CAS  Google Scholar 

  32. Hillmen, P. et al. Effect of eculizumab on hemolysis and transfusion requirements in patients with paroxysmal nocturnal hemoglobinuria. N. Engl. J. Med. 350, 552–559 (2004).

    Article  CAS  Google Scholar 

  33. Hawlisch, H. et al. C5a negatively regulates Toll-like receptor 4-induced immune responses. Immunity 22, 415–426 (2005).

    Article  CAS  Google Scholar 

  34. Wynn, T.A. Fibrotic disease and the TH1/TH2 paradigm. Nat. Rev. Immunol. 4, 583–594 (2004).

    Article  CAS  Google Scholar 

  35. Korstanje, R. & Paigen, B. From QTL to gene: the harvest begins. Nat. Genet. 31, 235–236 (2002).

    Article  CAS  Google Scholar 

  36. Poupon, R. & Poupon, R.E. Primary biliary cirrhosis. In Hepatology: A Textbook of Liver Diseases vol. 2 (eds. Zakim, D. & Boyer, T.D.) 1329–1365 (W.B. Saunders, Philadelphia, 1996).

    Google Scholar 

  37. Senaldi, G. et al. Activation of the complement system in primary sclerosing cholangitis. Gastroenterology 97, 1430–1434 (1989).

    Article  CAS  Google Scholar 

  38. Geier, A. et al. Common heterozygous hemochromatosis gene mutations are risk factors for inflammation and fibrosis in chronic hepatitis C. Liver Int. 24, 285–294 (2004).

    Article  CAS  Google Scholar 

  39. Schulz, K.F. & Grimes, D.A. Case-control studies: research in reverse. Lancet 359, 431–434 (2002).

    Article  Google Scholar 

  40. Wasmuth, H.E. et al. CC Chemokine Receptor 5 Δ32 polymorphism in two independent cohorts of HCV infected patients without hemophilia. J. Mol. Med. 82, 64–69 (2004).

    Article  CAS  Google Scholar 

  41. Manly, K.F. & Olson, J.M. Overview of QTL mapping software and introduction to Map Manager QT. Mamm. Genome 10, 327–334 (1999).

    Article  CAS  Google Scholar 

  42. Haley, C.S. & Knott, S.A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69, 315–324 (1992).

    Article  CAS  Google Scholar 

  43. Stephens, M. & Donnelly, P. A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am. J. Hum. Genet. 73, 1162–1169 (2003).

    Article  CAS  Google Scholar 

  44. Sebastiani, P. et al. Minimal haplotype tagging. Proc. Natl. Acad. Sci. USA 100, 9900–9905 (2003).

    Article  CAS  Google Scholar 

  45. Desmet, V.J., Gerber, M., Hoofnagle, J.H., Manns, M. & Scheuer, P.J. Classification of chronic hepatitis: diagnosis, grading and staging. Hepatology 19, 1513–1520 (1994).

    Article  CAS  Google Scholar 

  46. Imbert-Bismut, F. et al. for the MULTIVIRC group. Biochemical markers of liver fibrosis in patients with hepatitis C virus infection: a prospective study. Lancet 357, 1069–1075 (2001).

    Article  CAS  Google Scholar 

  47. Fehrenbach, H., Weiskirchen, R., Kasper, M. & Gressner, A.M. Up-regulated expression of the receptor for advanced glycation end products in cultured rat hepatic stellate cells during transdifferentiation to myofibroblasts. Hepatology 34, 943–952 (2001).

    Article  CAS  Google Scholar 

  48. Riedemann, N.C. et al. Increased C5a receptor expression in sepsis. J. Clin. Invest. 110, 101–108 (2002).

    Article  CAS  Google Scholar 

  49. Sasieni, P.D. From genotypes to genes: doubling the sample size. Biometrics 53, 1253–1261 (1997).

    Article  CAS  Google Scholar 

  50. Elston, R.C. & Forthofer, R. Testing for Hardy-Weinberg equilibrium in small samples. Biometrics 33, 536–542 (1977).

    Article  Google Scholar 

Download references

Acknowledgements

We thank H. Matern, M.C. Carey, B. Paigen and T. Sauerbruch for discussions and comments. This study was supported by grants from Deutsche Forschungsgemeinschaft, the German Network of Excellence for Viral Hepatitis (Kompetenznetz Hepatitis), the Ministry of Science and Research of North-Rhine-Westphalia and Aachen University (cooperative project Identification of Molecular Markers and Gene Therapy for Fibrosis and Wound Healing). This study was presented in part at the Plenary Session of the Annual Meeting of the American Association for the Study of Liver Diseases, Boston, November 2002, and published in abstract form in Hepatology (36, 296A; 2002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Lammert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Association of human C5 haplotypes and htSNPs with serum C5 levels. (PDF 77 kb)

Supplementary Table 2

Primer and probe sequences for ET-recombination, sequencing and genotyping of Hc BAC-transgenic mice [FVB/NJ-Tg(Hc)]. (PDF 74 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hillebrandt, S., Wasmuth, H., Weiskirchen, R. et al. Complement factor 5 is a quantitative trait gene that modifies liver fibrogenesis in mice and humans. Nat Genet 37, 835–843 (2005). https://doi.org/10.1038/ng1599

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1599

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing