Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Atypical RNA polymerase subunits required for RNA-directed DNA methylation

Abstract

RNA-directed DNA methylation, one of several RNA interference–mediated pathways in the nucleus1, has been documented in plants2,3 and in human cells4,5. Despite progress in identifying the DNA methyltransferases, histone-modifying enzymes and RNA interference proteins needed for RNA-directed DNA methylation1, the mechanism remains incompletely understood. We screened for mutants defective in RNA-directed DNA methylation and silencing of a transgene promoter in Arabidopsis thaliana and identified three drd complementation groups6. DRD1 is a SNF2-like protein6 required for RNA-directed de novo methylation. We report here that DRD2 and DRD3 correspond to the second-largest subunit and largest subunit, respectively, of a fourth class of DNA-dependent RNA polymerase (polymerase IV) that is unique to plants. DRD3 is a functionally diversified homolog of NRPD1a or SDE4, identified in a separate screen for mutants defective in post-transcriptional gene silencing7,8. The identical DNA methylation patterns observed in all three drd mutants suggest that DRD proteins cooperate to create a substrate for RNA-directed de novo methylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Non-CG methylation is lost in drd mutants.
Figure 2: α′ promoter dsRNA and siRNAs accumulate in drd mutants.
Figure 3: Structure of the gene NRPD1b and positions of point mutations.
Figure 4: Transposon reactivation in drd mutants.
Figure 5: DNA methylation and siRNA accumulation from 5S rDNA repeats.
Figure 6: Distinct Pol IV complexes act in RNA-directed DNA methylation.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Matzke, M.A. & Birchler, J.A. RNAi-mediated pathways in the nucleus. Nat. Rev. Genet. 6, 24–35 (2005).

    Article  CAS  Google Scholar 

  2. Mathieu, O. & Bender, J. RNA-directed DNA methylation. J. Cell Sci. 117, 4881–4888 (2004).

    Article  CAS  Google Scholar 

  3. Matzke, M. et al. Genetic analysis of RNA-mediated transcriptional gene silencing. Biochim. Biophys. Acta 1677, 129–141 (2004).

    Article  CAS  Google Scholar 

  4. Morris, K.V., Chan, S.W.L., Jacobsen, S.E. & Looney, D.J. Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305, 1289–1292 (2004).

    Article  CAS  Google Scholar 

  5. Kawasaki, H. & Taira, K. Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature 431, 211–217 (2004).

    Article  CAS  Google Scholar 

  6. Kanno, T. et al. Involvement of putative SNF2 chromatin remodeling protein DRD1 in RNA-directed DNA methylation. Curr. Biol. 14, 801–805 (2004).

    Article  CAS  Google Scholar 

  7. Dalmay, T., Hamilton, A., Rudd, S., Angell, S. & Baulcombe, D.C. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101, 543–553 (2002).

    Article  Google Scholar 

  8. Herr, A.J., Jensen, M.B., Dalmay, T. & Baulcombe, D.C. RNA polymerase IV directs silencing of endogenous DNA. Science 308, 118–120 (2005).

    Article  CAS  Google Scholar 

  9. Aufsatz, W., Mette, M.F., van der Winden, J., Matzke, A.J.M. & Matzke, M. RNA-directed DNA methylation in Arabidopsis. Proc. Natl. Acad. Sci. USA 99, 16499–16506 (2002).

    Article  CAS  Google Scholar 

  10. Jones, L., Ratcliff, F. & Baulcombe, D.C. RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance. Curr. Biol. 11, 747–757 (2001).

    Article  CAS  Google Scholar 

  11. Melquist, S. & Bender, J. Transcription from an upstream promoter controls methylation signaling from an inverted repeat of endogenous genes in Arabidopsis. Genes Dev. 17, 2036–2047 (2003).

    Article  CAS  Google Scholar 

  12. Kanno, T. et al. A SNF2-like protein facilitates dynamic control of DNA methylation. EMBO Rep. (in the press).

  13. The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

  14. Onodera, Y. et al. Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell 120, 613–622 (2005).

    Article  CAS  Google Scholar 

  15. Hamilton, A., Voinnet, O., Chappell, L. & Baulcombe, D. Two classes of short interfering RNA in RNA silencing. EMBO J. 21, 4671–4679 (2002).

    Article  CAS  Google Scholar 

  16. Chan, S.W.L. et al. RNA silencing genes control de novo methylation. Science 303, 1336 (2004).

    Article  CAS  Google Scholar 

  17. Vongs, A., Kakutani, T., Martienssen, R.A. & Richards, E.J. Arabidopsis thaliana DNA methylation mutants. Science 260, 1926–1928 (1993).

    Article  CAS  Google Scholar 

  18. Steimer, A. et al. Endogenous targets of transcriptional gene silencing in Arabidopsis. Plant Cell 12, 1165–1178 (2000).

    Article  CAS  Google Scholar 

  19. Lippman, Z., May, B., Yordan, C., Singer, T. & Martienssen, R. Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification. PLoS Biol. 3, 420–426 (2003).

    Google Scholar 

  20. Zorio, D.A.R. & Bentley, D.L. Transcription elongation: The 'Foggy' is lifting. Curr. Biol. 11, R144–R146 (2001).

    Article  CAS  Google Scholar 

  21. Mourrain, P. et al. Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101, 533–542 (2000).

    Article  CAS  Google Scholar 

  22. Xie, Z. et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2, e104 (2004).

    Article  Google Scholar 

  23. Liu, J., He, Y., Amasino, R. & Chen, X. siRNAs targeting an intronic transposons in the regulation of natural flowering behavior in Arabidopsis. Genes Dev. 18, 2873–2878 (2004).

    Article  CAS  Google Scholar 

  24. Yu, B. et al. Methylation as a crucial step in plant microRNA biogenesis. Science 307, 932–935 (2005).

    Article  CAS  Google Scholar 

  25. Bellaoui, M. & Gruissem, W. Altered expression of the Arabidopsis ortholog of DCL affects normal plant development. Planta 219, 819–826 (2004).

    Article  CAS  Google Scholar 

  26. Lahmy, S. et al. DOMINO1, a member of a small plant-specific gene family, encodes a protein essential for nuclear and nucleolar functions. Plant J. 39, 809–820 (2004).

    Article  CAS  Google Scholar 

  27. Mette, M.F., Aufsatz, W., van der Winden, J., Matzke, M.A. & Matzke, A.J.M. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J. 19, 5194–5201 (2000).

    Article  CAS  Google Scholar 

  28. Singer, T., Yordan, C. & Martienssen, R.A. Robertson's mutator transposons in A. thaliana are regulated by the chromatin remodeling gene decrease in DNA methylation (DDM1). Genes Dev. 15, 591–602 (2001).

    Article  CAS  Google Scholar 

  29. Amedeo, P., Habu, Y., Afsar, K., Mittelsten Scheid, O. & Paszkowski, J. Disruption of the plant gene MOM releases transcriptional silencing of methylated genes. Nature 405, 203–206 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Pikaard, A. Herr and D. Baulcombe for discussions and preprints and the Monsanto Company for marker information. This work was supported by funds from the Austrian Fonds zur Förderung der wissenschaftlichen Forschung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjori Matzke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Bisulfite sequencing. (PDF 109 kb)

Supplementary Fig. 2

Sequence comparisons. (PDF 735 kb)

Supplementary Fig. 3

DRD protein-dependent RNA-directed de novo methylation. (PDF 11 kb)

Supplementary Fig. 4

AtSN1 methylation analysis. (PDF 3419 kb)

Supplementary Table 1

Oligonucleotides and small RNA probes. (PDF 6 kb)

Supplementary Methods (PDF 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanno, T., Huettel, B., Mette, M. et al. Atypical RNA polymerase subunits required for RNA-directed DNA methylation. Nat Genet 37, 761–765 (2005). https://doi.org/10.1038/ng1580

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1580

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing