Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epistasis analysis with global transcriptional phenotypes

Abstract

Classical epistasis analysis can determine the order of function of genes in pathways using morphological, biochemical and other phenotypes. It requires knowledge of the pathway's phenotypic output and a variety of experimental expertise and so is unsuitable for genome-scale analysis. Here we used microarray profiles of mutants as phenotypes for epistasis analysis. Considering genes that regulate activity of protein kinase A in Dictyostelium, we identified known and unknown epistatic relationships and reconstructed a genetic network with microarray phenotypes alone. This work shows that microarray data can provide a uniform, quantitative tool for large-scale genetic network analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transcriptional profiling to test whether pufA is epistatic to yakA.
Figure 2: Transcriptional profiling to test whether pkaC is epistatic to pufA.
Figure 3: Transcriptional profiling to test whether pkaR is epistatic to regA.
Figure 4: Pathway construction.
Figure 5: Additional genetic relationships between pkaC and pufA.

Similar content being viewed by others

References

  1. Avery, L. & Wasserman, S. Ordering gene function: the interpretation of epistasis in regulatory hierarchies. Trends Genet. 8, 312–316 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zupan, B. et al. GenePath: a system for automated construction of genetic networks from mutant data. Bioinformatics 19, 383–389 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Tong, A.H. et al. Global mapping of the yeast genetic interaction network. Science 303, 808–813 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Winzeler, E.A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Perou, C.M. et al. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc. Natl. Acad. Sci. USA 96, 9212–9217 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Golub, T.R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Gray, N.S. et al. Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science 281, 533–538 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Holstege, F.C. et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Alizadeh, A.A. & Staudt, L.M. Genomic-scale gene expression profiling of normal and malignant immune cells. Curr. Opin. Immunol. 12, 219–225 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Hughes, T.R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Roberts, C.J. et al. Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287, 873–880 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Shaulsky, G. & Loomis, W.F. Gene expression patterns in Dictyostelium using microarrays. Protist 153, 93–98 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Loomis, W.F. Dictyostelium discoideum: A Developmental System (Academic, New York, 1975).

    Google Scholar 

  15. Loomis, W.F. Role of PKA in the timing of developmental events in Dictyostelium cells. Microbiol. Mol. Biol. Rev. 62, 684 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Souza, G.M., da Silva, A.M. & Kuspa, A. Starvation promotes Dictyostelium development by relieving PufA inhibition of PKA translation through the YakA kinase pathway. Development 126, 3263–3274 (1999).

    CAS  PubMed  Google Scholar 

  17. Efron, B., Halloran, E. & Holmes, S. Bootstrap confidence levels for phylogenetic trees. Proc. Natl. Acad. Sci. USA 93, 13429–13434 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Felsenstein, J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791 (1985).

    Article  PubMed  Google Scholar 

  19. Van Driessche, N. et al. A transcriptional profile of multicellular development in Dictyostelium discoideum. Development 129, 1543–1552 (2002).

    CAS  PubMed  Google Scholar 

  20. Shaulsky, G., Fuller, D. & Loomis, W.F. A cAMP-phosphodiesterase controls PKA-dependent differentiation. Development 125, 691–699 (1998).

    CAS  PubMed  Google Scholar 

  21. Mann, S.K.O., Yonemoto, W.M., Taylor, S.S. & Firtel, R.A. DdPK3, which plays essential roles during Dictyostelium development, encodes the catalytic subunit of cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 89, 10701–10705 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Simon, M.N., Pelegrini, O., Veron, M. & Kay, R.R. Mutation of protein kinase A causes heterochronic development of Dictyostelium. Nature 356, 171–172 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Pitt, G.S. et al. Structurally distinct and stage-specific adenylyl cyclase genes play different roles in Dictyostelium development. Cell 69, 305–315 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, B. & Kuspa, A. Dictyostelium development in the absence of cAMP. Science 277, 251–254 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. King, R.D. et al. Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427, 247–252 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Spassov, D.S. & Jurecic, R. The PUF family of RNA-binding proteins: does evolutionarily conserved structure equal conserved function? IUBMB Life 55, 359–366 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Wharton, R.P. & Struhl, G. RNA regulatory elements mediate control of Drosophila body pattern by the posterior morphogen nanos. Cell 67, 955–967 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Murata, Y. & Wharton, R.P. Binding of pumilio to maternal hunchback mRNA is required for posterior patterning in Drosophila embryos. Cell 80, 747–756 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Wharton, R.P., Sonoda, J., Lee, T., Patterson, M. & Murata, Y. The Pumilio RNA-binding domain is also a translational regulator. Mol. Cell 1, 863–872 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Sonoda, J. & Wharton, R.P. Recruitment of Nanos to hunchback mRNA by Pumilio. Genes Dev. 13, 2704–2712 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Asaoka-Taguchi, M., Yamada, M., Nakamura, A., Hanyu, K. & Kobayashi, S. Maternal Pumilio acts together with Nanos in germline development in Drosophila embryos. Nat. Cell Biol. 1, 431–437 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Gerber, A.P., Herschlag, D. & Brown, P.O. Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast. PLoS Biol. 2, E79 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Abe, K. & Yanagisawa, K. A new class of rapid developing mutants in Dictyostelium discoideum: Implications for cyclic AMP metabolism and cell differentiation. Dev. Biol. 95, 200–210 (1983).

    Article  CAS  PubMed  Google Scholar 

  34. Demsar, J. et al. GenePath: a computer program for genetic pathway discovery from mutant data. Medinfo 10, 956–959 (2001).

    Google Scholar 

  35. Souza, G.M., Lu, S. & Kuspa, A. YakA, a protein kinase required for the transition from growth to development in Dictyostelium. Development 125, 2291–2302 (1998).

    CAS  PubMed  Google Scholar 

  36. Wetterauer, B.W. et al. A protein kinase from Dictyostelium discoideum with an unusual acidic repeat domain. Biochim. Biophys. Acta 1265, 97–101 (1995).

    Article  PubMed  Google Scholar 

  37. Shaulsky, G., Escalante, R. & Loomis, W.F. Developmental signal transduction pathways uncovered by genetic suppressors. Proc. Natl. Acad. Sci. USA 93, 15260–15265 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, B. & Kuspa, A. CulB, a putative ubiquitin ligase subunit, regulates prestalk cell differentiation and morphogenesis in Dictyostelium spp. Euk. Cell 1, 126–136 (2002).

    Article  CAS  Google Scholar 

  39. Sussman, M. Cultivation and synchronous morphogenesis of Dictyostelium under controlled experimental conditions. in Methods in Cell Biology (ed. Spudich, J.A.) 9–29 (Academic, Orlando, Florida, 1987).

    Google Scholar 

  40. Shaulsky, G. & Loomis, W.F. Cell type regulation in response to expression of ricin-A in Dictyostelium. Dev. Biol. 160, 85–98 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Kibler, K. et al. A novel developmental mechanism in Dictyostelium revealed in a screen for communication mutants. Dev. Biol. 259, 193–208 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Kibler, K., Svetz, J., Nguyen, T.L., Shaw, C. & Shaulsky, G. A cell-adhesion pathway regulates intercellular communication during Dictyostelium development. Dev. Biol. 264, 506–521 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Katoh, M. et al. An orderly retreat: dedifferentiation is a regulated process. Proc. Natl. Acad. Sci. USA 101, 7005–7010 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gentleman, R.C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Thomason, P.A. et al. An intersection of the cAMP/PKA and two-component signal transduction systems in Dictyostelium. EMBO J. 17, 2838–2845 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. de Gunzburg, J., Franke, J., Kessin, R.H. & Veron, M. Detection and developmental regulation of the mRNA for the regulatory subunit of the cAMP-dependent protein kinase of Dictyostelium discoideum by cell-free translation. EMBO J. 5, 363–367 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Anjard, C., Pinaud, S., Kay, R.R. & Reymond, C.D. Overexpression of DdPK2 protein kinase causes rapid development and affects the intracellular cAMP pathway of Dictyostelium discoideum. Development 115, 785–790 (1992).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank V. Lundblad for discussions and for critical reading of the manuscript, R. Guerra for help with statistical analysis and for discussions and E. Holloway for assistance with data deposition. This work was supported by a grant from the National Institute of Child Health and Human Development. N.V.D. and E.O.B. are supported in part by training fellowships from the W.M. Keck Foundation of the Gulf Coast Consortia through the Keck Center for Computational and Structural Biology. J.D., P.J. and B.Z. are supported in part by the Slovene Ministry of Education, Science and Sports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gad Shaulsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Transcriptional profiling to test whether pufA is epistatic to yakA. (PDF 2049 kb)

Supplementary Fig. 2

Transcriptional profiling to test whether pkaC is epistatic to pufA. (PDF 1847 kb)

Supplementary Fig. 3

Transcriptional profiling to test whether pkaR is epistatic to regA. (PDF 564 kb)

Supplementary Fig. 4

Pathway construction. RNA samples from developing acaA and acaA pkaCO/E cells were analyzed. (PDF 12 kb)

Supplementary Fig. 5

Additional genetic relationships between pkaC and pufA. (PDF 1105 kb)

Supplementary Note (PDF 216 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Driessche, N., Demsar, J., Booth, E. et al. Epistasis analysis with global transcriptional phenotypes. Nat Genet 37, 471–477 (2005). https://doi.org/10.1038/ng1545

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1545

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing