Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A functional variant in FCRL3, encoding Fc receptor-like 3, is associated with rheumatoid arthritis and several autoimmunities

An Erratum to this article was published on 01 June 2005

Abstract

Rheumatoid arthritis is a common autoimmune disease with a complex genetic etiology. Here we identify a SNP in the promoter region of FCRL3, a member of the Fc receptor-like family, that is associated with susceptibility to rheumatoid arthritis (odds ratio = 2.15, P = 0.00000085). This polymorphism alters the binding affinity of nuclear factor-κB and regulates FCRL3 expression. We observed high FCRL3 expression on B cells and augmented autoantibody production in individuals with the disease-susceptible genotype. We also found associations between the SNP and susceptibility to autoimmune thyroid disease and systemic lupus erythematosus. FCRL3 may therefore have a pivotal role in autoimmunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LD and association of the FCRL gene cluster.
Figure 2: Correlation of FCRL3 expression with allele and genotype.
Figure 3: Expression patterns of FCRL3 in human tissues and cells.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Firestein, G.S. Evolving concepts of rheumatoid arthritis. Nature 423, 356–361 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Gregersen, P.K., Silver, J. & Winchester, R.J. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 30, 1205–1213 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Newton, J.L., Harney, S.M., Wordsworth, B.P. & Brown, M.A. A review of the MHC genetics of rheumatoid arthritis. Genes Immun. 5, 151–157 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Kochi, Y. et al. Analysis of single-nucleotide polymorphisms in Japanese rheumatoid arthritis patients shows additional susceptibility markers besides the classic shared epitope susceptibility sequences. Arthritis Rheum. 50, 63–71 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Seldin, M.F., Amos, C.I., Ward, R. & Gregersen, P.K. The genetics revolution and the assault on rheumatoid arthritis. Arthritis Rheum. 42, 1071–1079 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Tsao, B.P. The genetics of human systemic lupus erythematosus. Trends Immunol. 24, 595–602 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Bowcock, A.M. & Cookson, W.O. The genetics of psoriasis, psoriatic arthritis and atopic dermatitis. Hum. Mol. Genet. 13 Suppl 1, R43–R55 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Marrack, P., Kappler, J. & Kotzin, B.L. Autoimmune disease: why and where it occurs. Nat. Med. 7, 899–905 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Ueda, H. et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423, 506–511 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Becker, K.G. et al. Clustering of non-major histocompatibility complex susceptibility candidate loci in human autoimmune diseases. Proc. Natl. Acad. Sci. USA 95, 9979–9984 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tokuhiro, S. et al. An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat. Genet. 35, 341–348 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Begovich, A.B. et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am. J. Hum. Genet. 75, 330–337 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Davis, R.S., Wang, Y.H., Kubagawa, H. & Cooper, M.D. Identification of a family of Fc receptor homologs with preferential B cell expression. Proc. Natl. Acad. Sci. USA 98, 9772–9777 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Davis, R.S. et al. Fc receptor homologs: newest members of a remarkably diverse Fc receptor gene family. Immunol. Rev. 190, 123–136 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Hatzivassiliou, G. et al. IRTA1 and IRTA2, novel immunoglobulin superfamily receptors expressed in B cells and involved in chromosome 1q21 abnormalities in B cell malignancy. Immunity 14, 277–289 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Miller, I., Hatzivassiliou, G., Cattoretti, G., Mendelsohn, C. & Dalla-Favera, R. IRTAs: a new family of immunoglobulinlike receptors differentially expressed in B cells. Blood 99, 2662–2669 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Xu, M.J., Zhao, R., Cao, H. & Zhao, Z.J. SPAP2, an Ig family receptor containing both ITIMs and ITAMs. Biochem. Biophys. Res. Commun. 293, 1037–1046 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Ravetch, J.V. & Bolland, S. IgG Fc receptors. Annu. Rev. Immunol. 19, 275–290 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Kyogoku, C. et al. Fcgamma receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus: contribution of FCGR2B to genetic susceptibility. Arthritis Rheum. 46, 1242–1254 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Capon, F. et al. Fine mapping of the PSORS4 psoriasis susceptibility region on chromosome 1q21. J. Invest. Dermatol. 116, 728–730 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Dai, K.Z. et al. The T cell regulator gene SH2D2A contributes to the genetic susceptibility of multiple sclerosis. Genes Immun. 2, 263–268 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Jirholt, J. et al. Genetic linkage analysis of collagen-induced arthritis in the mouse. Eur. J. Immunol. 28, 3321–3328 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Sundvall, M. et al. Identification of murine loci associated with susceptibility to chronic experimental autoimmune encephalomyelitis. Nat. Genet. 10, 313–317 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Teuscher, C. et al. Evidence that Tmevd2 and eae3 may represent either a common locus or members of a gene complex controlling susceptibility to immunologically mediated demyelination in mice. J. Immunol. 159, 4930–4934 (1997).

    CAS  PubMed  Google Scholar 

  25. Podolin, P.L. et al. Congenic mapping of the insulin-dependent diabetes (Idd) gene, Idd10, localizes two genes mediating the Idd10 effect and eliminates the candidate Fcgr1. J. Immunol. 159, 1835–1843 (1997).

    CAS  PubMed  Google Scholar 

  26. Nieto, A. et al. Involvement of Fcgamma receptor IIIA genotypes in susceptibility to rheumatoid arthritis. Arthritis Rheum. 43, 735–739 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Radstake, T.R. et al. Role of Fcgamma receptors IIA, IIIA, and IIIB in susceptibility to rheumatoid arthritis. J. Rheumatol. 30, 926–933 (2003).

    CAS  PubMed  Google Scholar 

  28. Devlin, B. & Risch, N. A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics 29, 311–322 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Cordell, H.J. & Clayton, D.G. A unified stepwise regression procedure for evaluating the relative effects of polymorphisms within a gene using case/control or family data: application to HLA in type 1 diabetes. Am. J. Hum. Genet. 70, 124–141 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Sebastiani, P. et al. Minimal haplotype tagging. Proc. Natl. Acad. Sci. USA 100, 9900–9905 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tsunoda, T. et al. Variation of gene-based SNPs and linkage disequilibrium patterns in the human genome. Hum. Mol. Genet. 13, 1623–1632 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Pritchard, J.K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Pritchard, J.K. & Rosenberg, N.A. Use of unlinked genetic markers to detect population stratification in association studies. Am. J. Hum. Genet. 65, 220–228 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kaijzel, E.L. et al. Allele-specific quantification of tumor necrosis factor alpha (TNF) transcription and the role of promoter polymorphisms in rheumatoid arthritis patients and healthy individuals. Genes Immun. 2, 135–144 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Takemura, S. et al. Lymphoid neogenesis in rheumatoid synovitis. J. Immunol. 167, 1072–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Weyand, C.M. & Goronzy, J.J. Ectopic germinal center formation in rheumatoid synovitis. Ann. N. Y. Acad. Sci. 987, 140–149 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Alarcon, G.S. et al. Suppression of rheumatoid factor production by methotrexate in patients with rheumatoid arthritis. Evidence for differential influences of therapy and clinical status on IgM and IgA rheumatoid factor expression. Arthritis Rheum. 33, 1156–1161 (1990).

    Article  CAS  PubMed  Google Scholar 

  38. Suzuki, K. et al. High diagnostic performance of ELISA detection of antibodies to citrullinated antigens in rheumatoid arthritis. Scand. J. Rheumatol. 32, 197–204 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Rantapaa-Dahlqvist, S. et al. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum. 48, 2741–2749 (2003).

    Article  PubMed  Google Scholar 

  40. Capon, F., Semprini, S., Dallapiccola, B. & Novelli, G. Evidence for interaction between psoriasis-susceptibility loci on chromosomes 6p21 and 1q21. Am. J. Hum. Genet. 65, 1798–1800 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Suzuki, A. et al. Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat. Genet. 34, 395–402 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Barton, A. et al. A functional haplotype of the PADI4 gene associated with rheumatoid arthritis in a Japanese population is not associated in a United Kingdom population. Arthritis Rheum. 50, 1117–1121 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Jorgensen, T.N., Gubbels, M.R. & Kotzin, B.L. New insights into disease pathogenesis from mouse lupus genetics. Curr. Opin. Immunol. 16, 787–793 (2004).

    Article  PubMed  Google Scholar 

  44. Edwards, J.C. et al. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N. Engl. J. Med. 350, 2572–2581 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Gray, D. et al. Observations on memory B-cell development. Semin. Immunol. 9, 249–254 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. van Eijk, M., Defrance, T., Hennino, A. & de Groot, C. Death-receptor contribution to the germinal-center reaction. Trends Immunol. 22, 677–682 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Arnett, F.C. et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 31, 315–324 (1988).

    Article  CAS  PubMed  Google Scholar 

  48. Hochberg, M.C. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 40, 1725 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Aikawa, Y., Yamamoto, M., Yamamoto, T., Morimoto, K. & Tanaka, K. An anti-rheumatic agent T-614 inhibits NF-kappaB activation in LPS- and TNF-alpha-stimulated THP-1 cells without interfering with IkappaBalpha degradation. Inflamm. Res. 51, 188–194 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Hoshino, M. et al. Identification of the stef gene that encodes a novel guanine nucleotide exchange factor specific for Rac1. J. Biol. Chem. 274, 17837–17844 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Kanno and other members of the Laboratory for Rheumatic Diseases for technical assistance; H. Kawakami for expertise in computer programming; M. Yukioka, S. Tohma, Y. Nishioka, T. Matsubara, S. Wakitani, R. Teshima, N. Ishikawa, K. Ito, K. Ito, K. Kuma, H. Tamai and T. Akamizu for clinical sample collection; M. Ishikawa and Y. Amasaki for preparation of the second population study; M. Nagashima and S. Yoshino for sampling rheumatoid arthritis synovium; and K. Nagatani and Y. Komagata for advice. This work was supported by grants from the Japanese Millennium Project, the US National Institutes of Health and the Korean Molecular and Cellular BioDiscovery Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Yamada.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Stratification analysis of case-control samples using STRUCTURE software. (PDF 53 kb)

Supplementary Fig. 2

FCRL3 expression in RA synovium from two patients (RA2, RA3). (PDF 209 kb)

Supplementary Table 1

Case-control association analysis of the FCRL region. (PDF 21 kb)

Supplementary Table 2

Replication study of FCRL3 association with RA. (PDF 15 kb)

Supplementary Table 3

FCRL3 haplotype structure in different ethnic groups. (PDF 30 kb)

Supplementary Table 4

Primer sequences for ASTQ. (PDF 6 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kochi, Y., Yamada, R., Suzuki, A. et al. A functional variant in FCRL3, encoding Fc receptor-like 3, is associated with rheumatoid arthritis and several autoimmunities. Nat Genet 37, 478–485 (2005). https://doi.org/10.1038/ng1540

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1540

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing