Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Current issues in mouse genome engineering

Abstract

The mouse is the foremost vertebrate experimental model because its genome can be precisely and variously engineered. Now that the mouse genome has been sequenced and annotated, the task of mutating each gene is feasible, and an international cooperation is providing mutated embryonic stem cells and mice as readily available resources. Because these resources will change biomedical research, decisions about their nature will have far-reaching effects. It is therefore timely to consider topical issues for mouse genome engineering, such as the background genotype; homologous, site-specific and transpositional recombination; conditional mutagenesis; RNA-mediated interference; and functional genomics with embryonic stem cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme for rapidly constructing optimized targeting vectors.
Figure 2: Strategies to impose asymmetry onto Cre recombination.
Figure 3: Strategies to create homozygosity in ES cells.
Figure 4: Engineering above 10 kb.

Similar content being viewed by others

References

  1. Austin, C.P. et al. The knockout mouse project. Nat. Genet. 36, 921–924 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Auwerx, J. et al. The European dimension for the mouse genome mutagenesis program. Nat. Genet. 36, 925–927 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Branda, C.S. & Dymecki, S.M. Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev. Cell 6, 7–28 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. van der Weyden, L., Adams, D.J. & Bradley, A. Tools for targeted manipulation of the mouse genome. Physiol. Genomics 11, 133–164 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Metzger, D. & Chambon, P. Site-and time-specific gene targeting in the mouse. Methods 24, 71–80 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. von Melchner, H. & Stewart, A.F. Engineering of ES cell genomes with recombinase systems. in Handbook of Stem Cells, 609–623 (Elsevier, Burlington, Massachusetts, 2004).

    Chapter  Google Scholar 

  7. Gardner, R.L. & Brook, F.A. Reflections on the biology of embryonic stem cells. Int. J. Dev. Biol. 41, 235–243 (1997).

    CAS  PubMed  Google Scholar 

  8. Buehr, M. & Smith, A. Genesis of embryonic stem cells. Phil. Trans. R. Soc. Lond. B 358, 1397–1402 (2003).

    Article  CAS  Google Scholar 

  9. Evans, M.J. & Kaufman, M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    Article  CAS  PubMed  Google Scholar 

  10. Martin, G.R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78, 7634–7638 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Corcoran, L.M. & Metcalf, D. IL-5 and Rp105 signaling defects in B cells from commonly used 129 mouse substrains. J. Immunol. 163, 5836–5842 (1999).

    CAS  PubMed  Google Scholar 

  12. Crawley, J.N. Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology (Berl.) 132, 107–124 (1997).

    Article  CAS  Google Scholar 

  13. Seong, E., Saunders, T.L., Stewart, C.L. & Burmeister, M. To knockout in 129 or in C57BL/6: that is the question. Trends Genet. 20, 59–62 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Tanaka, M., Hadjantonakis, A.K. & Nagy, A. Aggregation chimeras. Combining ES cells, diploid and tetraploid embryos. Methods Mol. Biol. 158, 135–154 (2001).

    CAS  PubMed  Google Scholar 

  15. Eggan, K. & Jaenisch, R. Differentiation of F1 embryonic stem cells into viable male and female mice by tetraploid embryo complementation. Methods Enzymol. 365, 25–39 (2003).

    Article  PubMed  Google Scholar 

  16. Kunath, T. et al. Transgenic RNA interference in ES cell-derived embryos recapitulates a genetic null phenotype. Nat. Biotechnol. 21, 559–561 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Seibler, J. et al. Rapid generation of inducible mouse mutants. Nucleic Acids Res. 31, e12 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  18. O'Gorman, S., Dagenais, N.A., Qian, M. & Marchuk, Y. Protamine–Cre recombinase transgenes efficiently recombine target sequences in the male germ line of mice, but not in embryonic stem cells. Proc. Natl. Acad. Sci. USA 94, 14602–14607 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, P., Jenkins, N.A. & Copeland, N.G. Efficient Cre-loxP-induced mitotic recombination in mouse embryonic stem cells. Nat. Genet. 30, 66–72 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Belteki, G., Gertsenstein, M., Ow, D.W. & Nagy, A. Site-specific cassette exchange and germline transmission with mouse ES cells expressing φC31 integrase. Nat. Biotechnol. 21, 321–324 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. te Riele, H., Maandag, E.R. & Berns, A. Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc. Natl. Acad. Sci. USA 89, 5128–5132 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, Y., Buchholz, F., Muyrers, J.P. & Stewart, A.F. A new logic for DNA engineering using recombination in E. coli. Nat. Genet. 20, 123–128 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Copeland, N.G., Jenkins, N.A. & Court, D.L. Recombineering: a powerful new tool for mouse functional genomics. Nat. Rev. Genet. 2, 769–779 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, Y., Muyrers, J.P., Testa, G. & Stewart, A.F. DNA cloning by homologous recombination in Escherichia coli. Nat. Biotechnol. 18, 1314–1317 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Thomas, K.R., Deng, C. & Capecchi, M.R. High-fidelity gene targeting in embryonic stem cells by using sequence replacement vectors. Mol. Cell. Biol. 12, 2919–2923 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hasty, P., Rivera-Perez, J. & Bradley, A. The length of homology required for gene targeting in embryonic stem cells. Mol. Cell. Biol. 11, 5586–5591 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Valenzuela, D.M. et al. High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat. Biotechnol. 21, 652–659 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Yang, Y. & Seed, B. Site-specific gene targeting in mouse embryonic stem cells with intact bacterial artificial chromosomes. Nat. Biotechnol. 21, 447–451 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Moens, C.B., Auerbach, A.B., Conlon, R.A., Joyner, A.L. & Rossant, J.A. Targeted mutation reveals a role for N-myc in branching morphogenesis in the embryonic mouse lung. Genes Dev. 6, 691–704 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Skarnes, W.C. et al. The International Gene Trap Consortium. Nat. Genet. 36, 543–544 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rodriguez, C.I. et al. High efficiency FLPe deleter mice provide a complement to Cre-loxP for in vivo genetic engineering. Nat. Genet. 25, 139–140 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Schaft, J., Ashery-Padan, R., van der Hoeven, F., Gruss, P. & Stewart, A.F. Efficient FLP recombination in mouse ES cells and oocytes. Genesis 31, 6–10 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Gu, H., Zou, Y.R. & Rajewsky, K. Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell 73, 1155–1164 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Ringrose, L., Chabanis, S., Angrand, P.-O., Woodroofe, C. & Stewart, A.F. Quantitative comparison of DNA looping in vitro and in vivo: Chromatin increases effective DNA flexibility at short distances. EMBO J. 18, 6630–6641 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schnutgen, F. et al. Genomewide production of multipurpose alleles for the functional analysis of the mouse genome. Proc. Natl. Acad. Sci. USA 102, 7221–7226 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Albert, H., Dale, E.C., Lee, E. & Ow, D.W. Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J. 7, 649–659 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Schnutgen, F. et al. A directional strategy for monitoring Cre-mediated recombination at the cellular level in the mouse. Nat. Biotechnol. 21, 562–565 (2003).

    Article  PubMed  Google Scholar 

  38. Hansen, J. et al. A large-scale, gene-driven mutagenesis approach for the functional analysis of the mouse genome. Proc. Natl. Acad. Sci. USA 100, 9918–9922 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zambrowicz B.P., et al. Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention. Proc. Natl. Acad. Sci. USA 100, 14019–14114 (2003).

    Article  Google Scholar 

  40. Keller, G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev. 19, 1129–1155 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Wobus, A.M. & Boheler, K.R. Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol. Rev. 85, 635–678 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Testa, G. et al. A reliable expression reporter cassette for multipurpose, knock-out/conditional mouse alleles. Genesis 38, 151–158 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Adams, D.J. et al. Mutagenic insertion and chromosome engineering resource (MICER). Nat. Genet. 36, 867–871 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Lefebvre, L., Dionne, N., Karaskova, J., Squire, J.A. & Nagy, A. Selection for transgene homozygosity in embryonic stem cells results in extensive loss of heterozygosity. Nat. Genet. 27, 257–258 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Meister, G. & Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Kittler, R. et al. An endoribonuclease-prepared siRNA screen in human cells identifies genes essential for cell division. Nature 432, 1036–1040 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431–437 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Seibler, J. et al. Single copy shRNA configuration for ubiquitous gene knockdown in mice. Nucleic Acids Res. 33, e67 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ventura, A. et al. Cre-lox-regulated conditional RNA interference from transgenes. Proc. Natl. Acad. Sci. USA 101, 10380–10385 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wiznerowicz, M. & Trono, D. Conditional suppression of cellular genes: lentivirus vector–mediated drug-inducible RNA interference. J. Virol. 77, 8957–8961 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schmidt, E.E., Taylor, D.S., Prigge, J.R., Barnett, S. & Capecchi, M.R. Illegitimate Cre-dependent chromosome rearrangements in transgenic mouse spermatids. Proc. Natl. Acad. Sci. USA 97, 13702–13707 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Loonstra, A. et al. Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells. Proc. Natl. Acad. Sci. USA 98, 9209–9214 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Logie, C. & Stewart, A.F. Ligand-regulated site-specific recombination. Proc. Natl. Acad. Sci. USA 92, 5940–5944 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Forster, A. et al. Engineering de novo reciprocal chromosomal translocations associated with Mll to replicate primary events of human cancer. Cancer Cell 3, 449–458 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Herault, Y., Rassoulzadegan, M., Cuzin, F. & Duboule, D. Engineering chromosomes in mice through targeted meiotic recombination (TAMERE). Nat. Genet. 20, 381–384 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Spitz, F., Herkenne, C., Morris, M.A. & Duboule, D. Inversion-induced disruption of the Hoxd cluster leads to the partition of regulatory landscapes. Nat. Genet. 37, 889–893 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Zong, H., Espinosa, J.S., Su, H.H., Muzumdar, M.D. & Luo, L. Mosaic analysis with double markers in mice. Cell 121, 479–492 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Zheng, B. et al. Engineering a mouse balancer chromosome. Nat. Genet. 22, 375–378 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Baer, A. & Bode, J. Coping with kinetic and thermodynamic barriers: RMCE, an efficient strategy for the targeted integration of transgenes. Curr. Opin. Biotechnol. 12, 473–478 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Luo, J.L. et al. Knock-in mice with a chimeric human/murine p53 gene develop normally and show wild-type p53 responses to DNA damaging agents: a new biomedical research tool. Oncogene 20, 320–328 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Testa, G. et al. Engineering the mouse genome with bacterial artificial chromosomes to create multi-purpose alleles. Nat. Biotechnol. 21, 443–447 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Oram, M., Szczelkun, M.D. & Halford, S.E. Recombination. Pieces of the site-specific recombination puzzle. Curr. Biol. 5, 1106–1109 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Smith, M.C. & Thorpe, H.M. Diversity in the serine recombinases. Mol. Microbiol. 44, 299–307 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Olivares, E.C. et al. Site-specific genomic integration produces therapeutic Factor IX levels in mice. Nat. Biotechnol. 20, 1124–1128 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Sauer, B. & McDermott, J. DNA recombination with a heterospecific Cre homolog identified from comparison of the pac-c1 regions of P1-related phages. Nucleic Acids Res. 32, 6086–6095 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen, Y. et al. Genotype-based screen for ENU-induced mutations in mouse embryonic stem cells. Nat. Genet. 24, 314–317 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Greber, B., Lehrach, H. & Himmelbauer, H. Mouse splice mutant generation from ENU-treated ES cells—a gene-driven approach. Genomics 85, 557–562 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Miskey, C., Izsvak, Z., Kawakami, K. & Ivics, Z. DNA transposons in vertebrate functional genomics. Cell. Mol. Life Sci. 62, 629–641 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Largaespada, D.A. Generating and manipulating transgenic animals using transposable elements. Reprod. Biol. Endocrinol. 1, 80 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Drabek, D. et al. Transposition of the Drosophila hydei Minos transposon in the mouse germ line. Genomics 81, 108–111 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Ding, S. et al. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122, 473–483 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Bestor, T.H. Transposons reanimated in mice. Cell 122, 322–325 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Dupuy, A.J., Akagi, K., Largaespada, D.A., Copeland, N.G. & Jenkins, N.A. Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature 436, 221–226 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Churchill, G.A. et al. The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat. Genet. 36, 1133–1137 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Fraser, A.G. & Marcotte, E.M. A probabilistic view of gene function. Nat. Genet. 36, 559–564 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. von Melchner, B. Skarnes, A. Smith, G. Testa and G. Yancopoulos for discussions. This work was supported by funding from the Sixth Research Framework Programme of the European Union, Project FunGenES and the VW Program on Conditional Mutagenesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Francis Stewart.

Ethics declarations

Competing interests

A.F.S. is a shareholder in GeneBridges GmbH (DNA Engineering) and a consultant to SAB member Artemis Pharmaceuticals GmbH (Mouse Engineering).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glaser, S., Anastassiadis, K. & Stewart, A. Current issues in mouse genome engineering. Nat Genet 37, 1187–1193 (2005). https://doi.org/10.1038/ng1668

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1668

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing