Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Genetic variation in laboratory mice

Abstract

Characterizing the patterns of genetic variation in an organism provides fundamental insight into the evolutionary history of the organism and defines the scope and nature of studies that must be designed to correlate genotype to phenotype. Given the pre-eminent role of the inbred mouse in biomedical research, considerable effort has been undertaken in recent years to describe more fully the nature and amount of genetic variation among the numerous strains of mice that are in widest use. Here, we discuss recent studies that have contributed to an emerging understanding of the unique variation patterns found in inbred strains of mice and how they have arisen through a combination of natural evolution and human-directed breeding. These preliminary results have ramifications for genetic research into complex biomedical traits and are the basis for the development of future variation resources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Derivation of modern laboratory mice.
Figure 2: Use of haplotype mapping in positional cloning.

Similar content being viewed by others

References

  1. Silver, L.M. Mouse Genetics (Oxford University Press, New York/Oxford, 1995).

    Google Scholar 

  2. Sachidanandam, R. et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409, 928–933 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Gabriel, S.B. et al. The structure of haplotype blocks in the human genome. Science 296, 2225–2229 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Ferris, S.D., Sage, R.D., Prager, E.M., Ritte, U. & Wilson, A.C. Mitochondrial DNA evolution in mice. Genetics 105, 681–721 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bonhomme, F., Guenet, J.-L., Dod, B., Moriwaki, K. & Bulfield, G. The polyphyletic origin of laboratory inbred mice and their rate of evolution. J. Linn. Soc. 30, 51–58 (1987).

    Article  Google Scholar 

  6. Boursot, P., Auffray, J.-C., Britton-Davidian, J. & Bonhomme, F. The evolution of house mice. Annu. Rev. Ecol. Syst. 24, 119–152 (1993).

    Article  Google Scholar 

  7. Sage, R.D., Heyneman, D., Lim, K.C. & Wilson, A.C. Wormy mice in a hybrid zone. Nature 324, 60–63 (1986).

    Article  CAS  PubMed  Google Scholar 

  8. Moulia, C. et al. Wormy mice in a hybrid zone: a genetic control of susceptibility to parasite infection. J. Evol. Biol. 4, 679–687 (1991).

    Article  Google Scholar 

  9. Forejt, J., Vincek, V., Klein, J., Lehrach, H. & Loudova-Mickova, M. Genetic mapping of the t-complex region on mouse chromosome 17 including the Hybrid sterility-1 gene. Mamm. Genome 1, 84–91 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Prager, E.M., Orrego, C. & Sage, R.D. Genetic variation and phylogeography of central Asian and other house mice, including a major new mitochondrial lineage in Yemen. Genetics 150, 835–861 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Keeler, C.E. The Laboratory Mouse. Its Origin, Heredity, and Culture (Harvard University Press, Cambridge, 1931).

    Google Scholar 

  12. Morse, H.C. Introduction. in Origins of Inbred Mice (ed. Morse, H.C.) 1–31 (Academic, New York, 1978).

    Google Scholar 

  13. Yokenawa, H. et al. Relationship between laboratory mice and subspecies Mus musculus domesticus based on restriction endonuclease cleavage patterns of mitochondrial DNA. Jpn. J. Genet. 55, 289–296 (1980).

    Article  Google Scholar 

  14. Ferris, S.D., Sage, R.D. & Wilson, A.C. Evidence from mtDNA sequences that common laboratory strains of inbred mice are descended from a single female. Nature 295, 163–165 (1982).

    Article  CAS  PubMed  Google Scholar 

  15. Bishop, C.E., Boursot, P., Baron, B., Bonhomme, F. & Hatat, D. Most classical Mus musculus domesticus laboratory mouse strains carry a Mus musculus musculus Y chromosome. Nature 315, 70–72 (1985).

    Article  CAS  PubMed  Google Scholar 

  16. Dietrich, W.F. et al. A comprehensive genetic map of the mouse genome. Nature 380, 149–152 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Lander, E.S. & Botstein, D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185–199 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Flint, J., Valdar, W., Shifman, S. & Mott, R. Strategies for mapping and cloning quantitative trait genes in rodents. Nat. Rev. Genet. 6, 271–286 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Mural, R.J. et al. A comparison of whole-genome shotgun-derived mouse chromosome 16 and the human genome. Science 296, 1661–1671 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Waterston, R.H. et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Wade, C.M. et al. The mosaic structure of variation in the laboratory mouse genome. Nature 420, 574–578 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, J. et al. A high-resolution multistrain haplotype analysis of laboratory mouse genome reveals three distinctive genetic variation patterns. Genome Res. 15, 241–249 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Adams, D.J. et al. Complex haplotypes, copy number polymorphisms and coding variation in two recently divergent mouse strains. Nat. Genet. 37, 532–536 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Yalcin, B. et al. Unexpected complexity in the haplotypes of commonly used inbred strains of laboratory mice. Proc. Natl. Acad. Sci. USA 101, 9734–9739 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Frazer, K.A. et al. Segmental phylogenetic relationships of inbred mouse strains revealed by fine-scale analysis of sequence variation across 4.6 Mb of mouse genome. Genome Res. 14, 1493–1500 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Grupe, A. et al. In silico mapping of complex disease-related traits in mice. Science 292, 1915–1918 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Darvasi, A. In silico mapping of mouse quantitative trait loci. Science 294, 2423 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Pletcher, M.T. et al. Use of a dense single nucleotide polymorphism map for in silico mapping in the mouse. PLoS Biol. 2, e393 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cervino, A.C. et al. Integrating QTL and high-density SNP analyses in mice to identify Insig2 as a susceptibility gene for plasma cholesterol levels. Genomics, published online 29 August 2005 (10.1016/j.ygeno.2005.07.010).

  30. Ideraabdullah, F.Y. et al. Genetic and haplotype diversity among wild-derived mouse inbred strains. Genome Res. 14, 1880–1887 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cooper, D.N. & Krawczak, M. Human Gene Mutation (BIOS Scientific, Oxford, 1993).

    Google Scholar 

  32. Cheung, J. et al. Recent segmental and gene duplications in the mouse genome. Genome Biol. 4, R47 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Snijders, A.M. et al. Mapping segmental and sequence variations among laboratory mice using BAC array CGH. Genome Res. 15, 302–311 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chung, Y.J. et al. A whole-genome mouse BAC microarray with 1-Mb resolution for analysis of DNA copy number changes by array comparative genomic hybridization. Genome Res. 14, 188–196 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, J. et al. Genomic segmental polymorphisms in inbred mouse strains. Nat. Genet. 36, 952–954 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Singer, J.B. et al. Genetic dissection of complex traits with chromosome substitution strains of mice. Science 304, 445–448 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Payseur for comments on an earlier draft of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J Daly.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wade, C., Daly, M. Genetic variation in laboratory mice. Nat Genet 37, 1175–1180 (2005). https://doi.org/10.1038/ng1666

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1666

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing