Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A predominant role for the HLA class II region in the association of the MHC region with multiple sclerosis

Abstract

Genetic susceptibility to multiple sclerosis is associated with genes of the major histocompatibility complex (MHC), particularly HLA-DRB1 and HLA-DQB1 (ref. 1). Both locus and allelic heterogeneity have been reported in this genomic region2,3. To clarify whether HLA-DRB1 itself, nearby genes in the region encoding the MHC or combinations of these loci underlie susceptibility to multiple sclerosis, we genotyped 1,185 Canadian and Finnish families with multiple sclerosis (n = 4,203 individuals) with a high-density SNP panel spanning the genes encoding the MHC and flanking genomic regions. Strong associations in Canadian and Finnish samples were observed with blocks in the HLA class II genomic region (P < 4.9 × 10−13 and P < 2.0 × 10−16, respectively), but the strongest association was with HLA-DRB1 (P < 4.4 × 10−17). Conditioning on either HLA-DRB1 or the most significant HLA class II haplotype block found no additional block or SNP association independent of the HLA class II genomic region. This study therefore indicates that MHC-associated susceptibility to multiple sclerosis is determined by HLA class II alleles, their interactions and closely neighboring variants.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conditional logistic regression analysis of SNPs spanning the MHC genomic region.

Similar content being viewed by others

References

  1. Dyment, D.A., Ebers, G.C. & Sadovnick, A.D. Genetics of multiple sclerosis. Lancet Neurol. 3, 104–110 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Marrosu, M.G. et al. Dissection of the HLA association with multiple sclerosis in the founder isolated population of Sardinia. Hum. Mol. Genet. 10, 2907–2916 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Rubio, J.P. et al. Genetic dissection of the human leukocyte antigen region by use of haplotypes of Tasmanians with multiple sclerosis. Am. J. Hum. Genet. 70, 1125–1137 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. De La Vega, F.M. et al. The linkage disequilibrium maps of three human chromosomes across four populations reflect their demographic history and a common underlying recombination pattern. Genome Res. 15, 454–462 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fernandez-Arquero, M. et al. Primary association of a TNF gene polymorphism with susceptibility to multiple sclerosis. Neurology 53, 1361–1363 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Allcock, R.J. et al. Susceptibility to multiple sclerosis mediated by HLA-DRB1 is influenced by a second gene telomeric of the TNF cluster. Hum. Immunol. 60, 1266–1273 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Fogdell-Hahn, A., Ligers, A., Gronning, M., Hillert, J. & Olerup, O. Multiple sclerosis: a modifying influence of HLA class I genes in an HLA class II associated autoimmune disease. Tissue Antigens 55, 140–148 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Harbo, H.F. et al. Genes in the HLA class I region may contribute to the HLA class II-associated genetic susceptibility to multiple sclerosis. Tissue Antigens 63, 237–247 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Gabriel, S.B. et al. The structure of haplotype blocks in the human genome. Science 296, 2225–2229 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Cordell, H.J. & Clayton, D.G. A unified stepwise regression procedure for evaluating the relative effects of polymorphisms within a gene using case/control or family data: application to HLA in type 1 diabetes. Am. J. Hum. Genet. 70, 124–141 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Cordell, H.J. Properties of case/pseudocontrol analysis for genetic association studies: Effects of recombination, ascertainment, and multiple affected offspring. Genet. Epidemiol. 26, 186–205 (2004).

    Article  PubMed  Google Scholar 

  12. Koeleman, B.P., Dudbridge, F., Cordell, H.J. & Todd, J.A. Adaptation of the extended transmission/disequilibrium test to distinguish disease associations of multiple loci: the Conditional Extended Transmission/Disequilibrium Test. Ann. Hum. Genet. 64, 207–213 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Kuokkanen, S. et al. Genomewide scan of multiple sclerosis in Finnish multiplex families. Am. J. Hum. Genet. 61, 1379–1387 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ebers, G.C. et al. A full genome search in multiple sclerosis. Nat. Genet. 13, 472–476 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Willer, C.J., Dyment, D.A., Risch, N.J., Sadovnick, A.D. & Ebers, G.C. Twin concordance and sibling recurrence rates in multiple sclerosis. Proc. Natl. Acad. Sci. USA 100, 12877–12882 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ebers, G.C. et al. Parent-of-origin effect in multiple sclerosis: observations in half-siblings. Lancet 363, 1773–1774 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Johannesson, M. et al. Identification of epistasis through a partial advanced intercross reveals three arthritis loci within the Cia5 QTL in mice. Genes Immun. 6, 175–185 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Dyment, D.A. et al. Complex interactions among MHC haplotypes in multiple sclerosis: susceptibility and resistance. Hum. Mol. Genet. 14, 2019–2026 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Stewart, C.A. et al. Complete MHC haplotype sequencing for common disease gene mapping. Genome Res. 14, 1176–1187 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Oksenberg, J.R. et al. Mapping multiple sclerosis susceptibility to the HLA-DR locus in African Americans. Am. J. Hum. Genet. 74, 160–167 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Caballero, A. et al. DQB1*0602 confers genetic susceptibility to multiple sclerosis in Afro-Brazilians. Tissue Antigens 54, 524–526 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Ligers, A. et al. Evidence of linkage with HLA-DR in DRB1*15-negative families with multiple sclerosis. Am. J. Hum. Genet. 69, 900–903 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sadovnick, A.D., Risch, N.J. & Ebers, G.C. Canadian collaborative project on genetic susceptibility to MS, phase 2: rationale and method. Canadian Collaborative Study Group. Can. J. Neurol. Sci. 25, 216–221 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Saarela, J. et al. Fine mapping of a multiple sclerosis locus to 2.5 Mb on chromosome 17q22-q24. Hum. Mol. Genet. 11, 2257–2267 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. The International HapMap Consortium. The International HapMap Project. Nature 426, 789–796 (2003).

  26. Fan, J.B. et al. A versatile assay for high-throughput gene expression profiling on universal array matrices. Genome Res. 14, 878–885 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Laaksonen, M. et al. HLA class II associated risk and protection against multiple sclerosis-a Finnish family study. J. Neuroimmunol. 122, 140–145 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Barrett, J.C., Fry, B., Maller, J. & Daly, M.J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Abecasis, G.R., Cherny, S.S., Cookson, W.O. & Cardon, L.R. Merlin–rapid analysis of dense genetic maps using sparse gene flow trees. Nat. Genet. 30, 97–101 (2001).

    Article  PubMed  Google Scholar 

  30. Dudbridge, F. Pedigree disequilibrium tests for multilocus haplotypes. Genet. Epidemiol. 25, 115–121 (2003).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Roumy, J.-F. Olivier and A. Verner for their assistance in large-scale genotyping; M. Leboeuf and P. Laflamme for informatics support; L.R. Cardon and A.P. Morris for statistical advice; the families with multiple sclerosis for their participation; members of the Canadian Collaborative Study Group, M.-L. Sumelahti, J. Wikström, I. Elovaara, K. Koivisto, T. Pirttilä and M. Reunanen for collecting samples from individuals with multiple sclerosis; D. Bronnikov for assistance with data collection; and K. Morrison, H. Armstrong, B. Scott, G.C. DeLuca, B.M. Herrera, S.-M. Orton, S. Ramagopalan and M. Chao for assistance with sample preparation. M.R.L. is supported by a research studentship from the Multiple Sclerosis Society of Canada and a Clarendon Scholarship from the University of Oxford. A.M. has received a fellowship from the Canadian Institutes of Health Research. T.J.H. is the recipient of a Clinician-Scientist Award in Translational Research by the Burroughs Wellcome Fund and an Investigator Award from the Canadian Institutes of Health Research. This work was supported by the MS Society of Canada Research Foundation, Genome Canada, Genome Quebec, the Helsinki University Central Hospital Research Foundation and the US National Institutes of Health and by a grant from the National MS Society (for L.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George C Ebers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

LD structure of the extended MHC region in 3 Caucasian populations. (PDF 38490 kb)

Supplementary Fig. 2

SNP Coverage of the extended MHC region. (PDF 323 kb)

Supplementary Table 1

Haplotype block analysis. (PDF 13 kb)

Supplementary Table 2

Canadian and Finnish families by type. (PDF 6 kb)

Supplementary Table 3

Statistics for SNPs genotyped in this study. (PDF 55 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lincoln, M., Montpetit, A., Cader, M. et al. A predominant role for the HLA class II region in the association of the MHC region with multiple sclerosis. Nat Genet 37, 1108–1112 (2005). https://doi.org/10.1038/ng1647

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1647

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing