Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The melanocyte differentiation program predisposes to metastasis after neoplastic transformation

Abstract

The aggressive clinical behavior of melanoma suggests that the developmental origins of melanocytes in the neural crest might be relevant to their metastatic propensity. Here we show that primary human melanocytes, transformed using a specific set of introduced genes, form melanomas that frequently metastasize to multiple secondary sites, whereas human fibroblasts and epithelial cells transformed using an identical set of genes generate primary tumors that rarely do so. Notably, these melanomas have a metastasis spectrum similar to that observed in humans with melanoma. These observations indicate that part of the metastatic proclivity of melanoma is attributable to lineage-specific factors expressed in melanocytes and not in other cell types analyzed. Analysis of microarray data from human nevi shows that the expression pattern of Slug, a master regulator of neural crest cell specification and migration, correlates with those of other genes that are important for neural crest cell migrations during development. Moreover, Slug is required for the metastasis of the transformed melanoma cells. These findings indicate that melanocyte-specific factors present before neoplastic transformation can have a pivotal role in governing melanoma progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of retrovirus-transduced primary human melanocytes.
Figure 2: Primary Mel-STR melanomas give rise to widespread metastases in vivo.
Figure 3: Primary Mel-STR melanomas rapidly seed distinct metastatic clones to secondary organs.
Figure 4: Suppression of Slug expression inhibits melanoma metastasis in vivo.

Similar content being viewed by others

References

  1. Lens, M.B. & Dawes, M. Global perspectives of contemporary epidemiological trends of cutaneous malignant melanoma. Br. J. Dermatol. 150, 179–185 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Beddingfield, F.C., III. The melanoma epidemic: res ipsa loquitur . Oncologist 8, 459–465 (2003).

    Article  PubMed  Google Scholar 

  3. Bartkova, J. et al. The p16-cyclin D/Cdk4-pRb pathway as a functional unit frequently altered in melanoma pathogenesis. Cancer Res. 56, 5475–5483 (1996).

    CAS  PubMed  Google Scholar 

  4. Omholt, K., Platz, A., Kanter, L., Ringborg, U. & Hansson, J. NRAS and BRAF mutations arise early during melanoma pathogenesis and are preserved throughout tumor progression. Clin. Cancer Res. 9, 6483–6488 (2003).

    CAS  PubMed  Google Scholar 

  5. Chin, L. The genetics of malignant melanoma: lessons from mouse and man. Nat. Rev. Cancer 3, 559–570 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Tietze, M.K. & Chin, L. Murine models of malignant melanoma. Mol. Med. Today 6, 408–410 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Shaw, H.M., McCarthy, W.H., McCarthy, S.W. & Milton, G.W. Thin malignant melanomas and recurrence potential. Arch. Surg. 122, 1147–1150 (1987).

    Article  CAS  PubMed  Google Scholar 

  8. Corsetti, R.L., Allen, H.M. & Wanebo, H.J. Thin < or = 1 mm level III and IV melanomas are higher risk lesions for regional failure and warrant sentinel lymph node biopsy. Ann. Surg. Oncol. 7, 456–460 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Bedrosian, I. et al. Incidence of sentinel node metastasis in patients with thin primary melanoma (< or = 1 mm) with vertical growth phase. Ann. Surg. Oncol. 7, 262–267 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Nesbit, M.S.V. & Herlyn, M. Biology of melanocytes and melanoma. in Cutaneous Melanoma (eds. Balch, C. et al.) 463 (Quality Medical, St. Louis, 1998).

    Google Scholar 

  11. Bronner-Fraser, M. Neural crest cell migration in the developing embryo. Trends Cell Biol. 3, 392–397 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Hahn, W.C. et al. Creation of human tumour cells with defined genetic elements. Nature 400, 464–468 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Elenbaas, B. et al. Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev. 15, 50–65 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lundberg, A.S. et al. Immortalization and transformation of primary human airway epithelial cells by gene transfer. Oncogene 21, 4577–4586 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Rich, J.N. et al. A genetically tractable model of human glioma formation. Cancer Res. 61, 3556–3560 (2001).

    CAS  PubMed  Google Scholar 

  16. Li, G. et al. Downregulation of E-cadherin and Desmoglein 1 by autocrine hepatocyte growth factor during melanoma development. Oncogene 20, 8125–8135 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Cruz, J., Reis-Filho, J.S., Silva, P. & Lopes, J.M. Expression of c-met tyrosine kinase receptor is biologically and prognostically relevant for primary cutaneous malignant melanomas. Oncology 65, 72–82 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Natali, P.G. et al. Expression of the c-Met/HGF receptor in human melanocytic neoplasms: demonstration of the relationship to malignant melanoma tumour progression. Br. J. Cancer 68, 746–750 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Giordano, S., Ponzetto, C., Di Renzo, M.F., Cooper, C.S. & Comoglio, P.M. Tyrosine kinase receptor indistinguishable from the c-met protein. Nature 339, 155–156 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Phillips, D.L., Benner, K.G., Keeffe, E.B. & Traweek, S.T. Isolated metastasis to small bowel from anaplastic thyroid carcinoma. With a review of extra-abdominal malignancies that spread to the bowel. J. Clin. Gastroenterol. 9, 563–567 (1987).

    Article  CAS  PubMed  Google Scholar 

  21. Elsayed, A.M., Albahra, M., Nzeako, U.C. & Sobin, L.H. Malignant melanomas in the small intestine: a study of 103 patients. Am. J. Gastroenterol. 91, 1001–1006 (1996).

    CAS  PubMed  Google Scholar 

  22. Southern, E.M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503–517 (1975).

    Article  CAS  PubMed  Google Scholar 

  23. Hajra, K.M., Chen, D.Y. & Fearon, E.R. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res. 62, 1613–1618 (2002).

    CAS  PubMed  Google Scholar 

  24. LaBonne, C. & Bronner-Fraser, M. Snail-related transcriptional repressors are required in Xenopus for both the induction of the neural crest and its subsequent migration. Dev. Biol. 221, 195–205 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Lee, H.O., Levorse, J.M. & Shin, M.K. The endothelin receptor-B is required for the migration of neural crest-derived melanocyte and enteric neuron precursors. Dev. Biol. 259, 162–175 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Ikeda, K. et al. Expression of CD44H in the cells of neural crest origin in peripheral nervous system. Neuroreport 7, 1713–1716 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Britsch, S. et al. The ErbB2 and ErbB3 receptors and their ligand, neuregulin-1, are essential for development of the sympathetic nervous system. Genes Dev. 12, 1825–1836 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Carl, T.F., Dufton, C., Hanken, J. & Klymkowsky, M.W. Inhibition of neural crest migration in Xenopus using antisense slug RNA. Dev. Biol. 213, 101–115 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Subramony, C. & Lewin, J.R. Nevus cells within lymph nodes. Possible metastases from a benign intradermal nevus. Am. J. Clin. Pathol. 84, 220–223 (1985).

    Article  CAS  PubMed  Google Scholar 

  30. Bortolani, A., Barisoni, D. & Scomazzoni, G. Benign “metastatic” cellular blue nevus. Ann. Plast. Surg. 33, 426–431 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Johnson, W.T. & Helwig, E.B. Benign nevus cells in the capsule of lymph nodes. Cancer 23, 747–753 (1969).

    Article  CAS  PubMed  Google Scholar 

  32. Morgenstern, J.P. & Land, H. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 18, 3587–3596 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Counter, C.M. et al. Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization. Proc. Natl. Acad. Sci. USA 95, 14723–14728 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stewart, S.A. et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 9, 493–501 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cifone, M.A. & Fidler, I.J. Correlation of patterns of anchorage-independent growth with in vivo behavior of cells from a murine fibrosarcoma. Proc. Natl. Acad. Sci. USA 77, 1039–1043 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kuperwasser, C. et al. Development of spontaneous mammary tumors in BALB/c p53 heterozygous mice. A model for Li-Fraumeni syndrome. Am. J. Pathol. 157, 2151–2159 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hodgson, G. et al. Genome scanning with array CGH delineates regional alterations in mouse islet carcinomas. Nat. Genet. 29, 459–464 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Snijders, A.M. et al. Shaping of tumor and drug-resistant genomes by instability and selection. Oncogene 22, 4370–4379 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Jain, A.N. et al. Fully automatic quantification of microarray image data. Genome Res. 12, 325–332 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kuperwasser, C., Pinkas, J., Hurlbut, G.D., Naber, S.P. & Jerry, D.J. Cytoplasmic sequestration and functional repression of p53 in the mammary epithelium is reversed by hormonal treatment. Cancer Res. 60, 2723–2729 (2000).

    CAS  PubMed  Google Scholar 

  41. Petersen, S.L., Gardner, E., Adelman, J. & McCrone, S. Examination of steroid-induced changes in LHRH gene transcription using 33P-and 35S-labeled probes specific for intron 2. Endocrinology 137, 234–239 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Golub, T.R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Dessain, H. Vaziri, P.A. Sharp, G. Gupta, S. Stewart, W. Hahn, A. Orimo, S. Godar, I. Ben-porath, J. Yang and T. Onder for discussions and suggestions during the course of this work; T. Golub for discussions regarding microarray experiments; T. Chavarria for assistance with animal husbandry; and D. LaCivita for primary melanocyte isolation. P.B.G. is supported by a US Army Pre-doctoral Breast Cancer Fellowship. This work was supported by a grant from the US National Institutes of Health and National Cancer Institute (R.A.W.). R.A.W. is an American Cancer Society Research Professor and a Daniel K. Ludwig Foundation Cancer Research Professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A Weinberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Immunohistochemical characterization of Mel-STR lung metastases. (PDF 1078 kb)

Supplementary Fig. 2

Immunohistochemical characterization of subcutaneous Mel-STR tumors. (PDF 2363 kb)

Supplementary Fig. 3

Gross appearance of Mel-STR metastasis-laden organs. (PDF 4296 kb)

Supplementary Table 1

Genes significantly correlated in their expression patterns with Slug in human nevus samples (p<0.05). (PDF 106 kb)

Supplementary Note (PDF 75 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, P., Kuperwasser, C., Brunet, JP. et al. The melanocyte differentiation program predisposes to metastasis after neoplastic transformation. Nat Genet 37, 1047–1054 (2005). https://doi.org/10.1038/ng1634

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1634

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing