Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster

Abstract

Loss of cell polarity and cancer are tightly correlated1, but proof for a causative relationship has remained elusive. In stem cells, loss of polarity and impairment of asymmetric cell division could alter cell fates and thereby render daughter cells unable to respond to the mechanisms that control proliferation2. To test this hypothesis, we generated Drosophila melanogaster larval neuroblasts containing mutations in various genes that control asymmetric cell division and then assayed their proliferative potential after transplantation into adult hosts. We found that larval brain tissue carrying neuroblasts with mutations in raps (also called pins), mira, numb or pros grew to more than 100 times their initial size, invading other tissues and killing the hosts in 2 weeks. These tumors became immortal and could be retransplanted into new hosts for years. Six weeks after the first implantation, genome instability and centrosome alterations, two traits of malignant carcinomas3,4, appeared in these tumors. Increasing evidence suggests that some tumors may be of stem cell origin5,6. Our results show that loss of function of any of several genes that control the fate of a stem cell's daughters may result in hyperproliferation, triggering a chain of events that subverts cell homeostasis in a general sense and leads to cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overgrowth of mutant brain tissue implanted into adult hosts.
Figure 2: Cell types found in implanted tumors.
Figure 3: Genome and centrosome instability in implanted tumors.

Similar content being viewed by others

References

  1. Liu, H., Radisky, D.C. & Bissell, M.J. Proliferation and polarity in breast cancer: untying the gordian knot. Cell Cycle 4, 646–649 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Bilder, D. Epithelial polarity and proliferation control: links from the Drosophila neoplastic tumor suppressors. Genes Dev. 18, 1909–1925 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Pihan, G.A. et al. Centrosome defects and genetic instability in malignant tumors. Cancer Res. 58, 3974–3985 (1998).

    CAS  PubMed  Google Scholar 

  4. Pihan, G.A., Wallace, J., Zhou, Y. & Doxsey, S.J. Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Res. 63, 1398–1404 (2003).

    CAS  PubMed  Google Scholar 

  5. Al-Hajj, M. & Clarke, M.F. Self-renewal and solid tumor stem cells. Oncogene 23, 7274–7282 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Pardal, R., Clarke, M.F. & Morrison, S.J. Applying the principles of stem-cell biology to cancer. Nat. Rev. Cancer 3, 895–902 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Wodarz, A. Tumor suppressors: linking cell polarity and growth control. Curr. Biol. 10, R624–R626 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Humbert, P., Russell, S. & Richardson, H. Dlg, Scribble and Lgl in cell polarity, cell proliferation and cancer. Bioessays 25, 542–553 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Gateff, E. & Schneiderman, H.A. Developmental capacities of benign and malignant neoplasms of Drosophila . Rouxs Arch. Dev. Biol. 176, 23–65 (1974).

    Article  CAS  Google Scholar 

  10. Gateff, E. Malignant neoplasms of genetic origin in Drosophila melanogaster . Science 200, 1448–1459 (1978).

    Article  CAS  PubMed  Google Scholar 

  11. Bardin, A.J., Le Borgne, R. & Schweisguth, F. Asymmetric localization and function of cell-fate determinants: a fly's view. Curr. Opin. Neurobiol. 14, 6–14 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Chia, W. & Yang, X. Asymmetric division of Drosophila neural progenitors. Curr. Opin. Genet. Dev. 12, 459–464 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Ohshiro, T., Yagami, T., Zhang, C. & Matsuzaki, F. Role of cortical tumour-suppressor proteins in asymmetric division of Drosophila neuroblast. Nature 408, 593–596 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Peng, C.Y., Manning, L., Albertson, R. & Doe, C.Q. The tumour-suppressor genes lgl and dlg regulate basal protein targeting in Drosophila neuroblasts. Nature 408, 596–600 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Albertson, R. & Doe, C.Q. Dlg, scrib and lgl regulate neuroblast cell size and mitotic spindle asymmetry. Nat. Cell Biol. 5, 166–170 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Truman, J.W. & Bate, M. Spatial and temporal patterns of neurogenesis in the central nervous system of Drosophila melanogaster . Dev. Biol. 125, 145–157 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Ceron, J., Gonzalez, C. & Tejedor, F.J. Patterns of cell division and expression of asymmetric cell fate determinants in postembryonic neuroblast lineages of Drosophila . Dev. Biol. 230, 125–138 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Gateff, E. & Schneiderman, H.A. Neoplasms in mutant and cultured wild-type tissues of Drosophila . Natl. Cancer Inst. Monogr. 31, 365–397 (1969).

    CAS  PubMed  Google Scholar 

  19. Watson, K.L., Justice, R.W. & Bryant, P.J. Drosophila in cancer research: the first fifty tumor suppressor genes. J. Cell Sci. Suppl. 18, 19–33 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Hadorn, E. in The Genetics and Biology of Drosophila vol. 2c (M. Ashburner & T.R.F. Wright, eds.) 557–558 (Academic, New York, 1978).

    Google Scholar 

  21. Lengauer, C., Kinzler, K.W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Shih, I.M. et al. Evidence that genetic instability occurs at an early stage of colorectal tumorigenesis. Cancer Res. 61, 818–822 (2001).

    CAS  PubMed  Google Scholar 

  23. Gatti, M. & Baker, B.S. Genes controlling essential cell-cycle functions in Drosophila melanogaster . Genes Dev. 3, 438–453 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Meraldi, P. & Nigg, E.A. The centrosome cycle. FEBS Lett. 521, 9–13 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Sunkel, C.E., Gomes, R., Sampaio, P., Perdigao, J. & Gonzalez, C. Tubulin is required for the structure and function of the microtubule organizing centre in Drosophila neuroblasts. EMBO J. 14, 28–36 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hadorn, E. Constancy, variation and type of determination and differentiation in cells from male genitalia rudiments of Drosophila melanogaster in permanent culture in vivo . Dev. Biol. 13, 424–509 (1966).

    Article  CAS  PubMed  Google Scholar 

  27. Gehring, W. Cell heredity and changes of determination in cultures of imaginal discs in Drosophila melanogaster . J. Embryol. Exp. Morphol. 15, 77–111 (1966).

    CAS  PubMed  Google Scholar 

  28. Li, H.S. et al. Inactivation of numb and numblike in embryonic dorsal forebrain impairs neurogenesis and disrupts cortical morphogenesis. Neuron 40, 1105–1118 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Klezovitch, O., Fernandez, T.E., Tapscott, S.J. & Vasioukhin, V. Loss of cell polarity causes severe brain dysplasia in lgl1 knockout mice. Genes Dev. 18, 559–571 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Molofsky, A.V., Pardal, R. & Morrison, S.J. Diverse mechanisms regulate stem cell self-renewal. Curr. Opin. Cell Biol. 16, 700–707 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y.N. Jan, F. Matsuzaki, A. Ephrussi, A. Wodarz, J. Knoblich, the Developmental Studies Hybridoma Bank and the Bloomington Drosophila Stock Center for providing fly stocks and antibodies; E. Gateff, A. Wodarz, J. Casanova, E. Battlle, G. Morata, P. Askjaer, P. Dominguez and members of our laboratory for discussions; G. Bouche for his guidance to E.C. during the course of his doctoral thesis; M. Llamazares for proofreading; and I. Vernos and the people in her laboratory who hosted E.C. for their contribution. C.G. is indebted to J. Szabad for demonstrating the tissue transplantation technique. Work in our laboratory is supported by grants from the European Union, the Spanish MEC and Fundación Médica MMA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cayetano Gonzalez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caussinus, E., Gonzalez, C. Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster. Nat Genet 37, 1125–1129 (2005). https://doi.org/10.1038/ng1632

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1632

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing