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To the editor:
In the study of complex disease, separating
causal from confounded factors is a challenge
for genetic epidemiologists. One tool useful for
separating these factors is Genomic Control
(GC). In this communication we clarify how
and when to use GC. We also describe a refined
approach to GC, which should be used when
GC is applied to extreme settings.

Population-based studies, such as case-
control studies, are common designs used to
determine the genetic and environmental
bases of disease. To avoid false positive
associations, design and analysis of
population-based studies should account for
population stratification, which can inflate
association test statistics. One analytic
method used to control the false positive rate
is GC. In our original paper1, we investigated
two scenarios with two corresponding
analytic methods. GC is the version similar
to the typical approach to hypothesis testing,
and GCB is the version that uses Bayesian
inference. GC is suitable when a modest
number of candidate genes are assessed and
L supplementary loci are included for
control. The supplementary loci, called null
loci, are used to correct any inflation, λ, in
association test statistic(s) by estimating λ
from the null test statistics. GC produces
average rejection rates close to the targeted
0.05 significance level2–4.

We also considered population-based
studies when large numbers of markers are
tested1. GCB is designed for this scenario.
Rather than preselecting null loci, GCB
delineates loci associated with disease as
‘outliers’ relative to most of the loci tested.

In our original papers1,2, we argued that a
population-based study should attempt to
remove the effect of stratification by
experimental design and analysis, such as by
matching cases and controls for ethnicity and
environmental covariates. GC then adjusts
for the residual effects of stratification.
Careful study design and implementation
pay off in statistical power5,6; even small
stratification can have considerable
consequences for large samples1–5.

Marchini et al.7 explored the efficacy of
GC for population-based studies under less
ideal conditions, using subjects that
originate from different populations and
including environmental effects that
induce geographically distinct prevalences;
both of these possibilities were ignored in
the design and analysis. Because they
genotyped a large number of loci, they
required an extremely small significance

level (α) for P values. They found that GC
could be anticonservative when α is small.
Their results are sensible because GC treats
λ as a known constant8. For small values of
α, variability in the estimate of λ matters.
The population-based studies explored by
Marchini et al.7 can produce highly inflated
test statistics (Fig. 1), and, because these
population-based studies involve a large
number of candidate loci, they are more
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Figure 1 Performance of GC as a function of the targeted significant P value (α), the effect of
stratification (λ) and the number of null loci included (L). For the solid line, α = 10–2; at λ = 10, α
decreases by an order of magnitude for each consecutive line thereafter. Note the different scales in
the top panels versus the bottom panels. Marchini et al.7 generated their data by using a beta-
binomial model. We avoided generating individual loci by working with a summary statistic for the
values, thereby obtaining a good approximation to their simulations. The tests are distributed as a
scaled χ2 statistic, λχ2. A sketch of our procedure, for a single choice of λ, α and L, requires several
steps: generate L copies of x, each x distributed χ2, and multiply each x by λ; use GC to compute λε ;
draw another random realization x from a χ2 and compute the GC test statistic as y = λx/λε. Carrying
out these steps many times produces pm, the expected fraction of times the P value exceeds α for a
given λ and L. Then log10(pm/α) is calculated. Carrying out this procedure for a large number of
settings for λ, α and L produces these results, which capture the essence of the results that
Marchini et al.7 obtained by using their simulation techniques. For n = 1,000, models A1, A2 and
B1–B5 of Marchini et al.7 are inflated by λ ≈ 18.8, 11.0, 1.1, 1.2, 1.7, 1.6 and 4.1, respectively.
See Supplementary Note online for more information.
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appropriately analyzed by using GCB
rather than GC.

Because λ is determined by sample size,
stratification and differential prevalence1,
we can generate and compactly represent
the general findings of Marchini et al.7 (Fig.
1). Four features stand out from our results:
(i) GC works well in situations for which it
was originally intended, namely larger
values of α and/or smaller values of λ (refs.
1–4); (ii) GC becomes increasingly
anticonservative as α decreases or as λ
increases; (iii) bias is also a function of L
(refs. 1,2); and (iv) even minor stratification
can have a substantial impact on
population-based studies with large sample
sizes1,7,9. Of these results, the second feature
is new to Marchini et al.7; the fourth was
shown mathematically1 before it was
demonstrated empirically7,9.

Is there a way to adjust the procedure if a
researcher wishes to apply the logic of GC
and use an extremely small α value?

Correcting the bias in GC is straightforward
by simple modification of the test statistic
(GCF). For GCF, estimate λ using the mean
(λm) of the null test statistics and account for
the variability of λm by using an F test to
determine the P values. Notably, GCF is
accurate throughout the parameter space,
even for only 30 null loci (Fig. 2).

Our means of validating the results of
Marchini et al.7 and our own results use a
shortcut method that Marchini et al.7 did not
use. Our results are also supported by using
the simulation methods of Marchini et al.7.
When we used their methods and analyzed
the data using GCF, we again found that GCF
yielded an excellent approximation for small
values of α (Table 1), even when λ is inflated
substantially by large sample size or
geographically distinct prevalences.

In summary, when a large number of
candidate loci are genotyped or when α is
small, application of GC produces misleading
results (Fig. 1), as Marchini et al.7 show.
Because GCF corrects this bias for small
values of α, and does so in a range of settings
(Fig. 2 and Table 1), we conclude that the bias
is largely due to the uncertainty in λ. GCF
accounts for this uncertainty in its degrees of
freedom. Thus, GCF provides a simple

alternative to recently suggested methods
based on the confidence interval for λ (ref. 9).

As we have pointed out before1,10, for
experiments involving a large number of tests
of genetic markers, one should analyze the
entire distribution of test statistics. In this
setting different statistical paradigms should
be considered, such as methods based on the
false discovery rate principle11, which has
great promise for this setting (refs. 10,12 and
S.-A.B., B.D., K.R. and L. Wasserman,
unpublished data).

Note: Supplementary information is available on the
Nature Genetics website.
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Figure 2 Performance of GCF as a function of α,
λm and L. Simulations were done as described
for Figure 1, with two exceptions. Instead of
using the robust estimate for λ, λε, we used the
mean λm. And instead of determining the P
value of y from a χ2 distribution, y was assumed
to be distributed according to F(1,L) and the P
values were calculated from that distribution.
Note the compressed vertical scale (relative to
Fig. 1), reflecting the miniscule error for all
settings. The greatest error was observed for L =
30 and α = 10–7. See Supplementary Note online
for more information.

Table 1  Targeted significance levels of GCF compared with the realized values produced by simulations using a beta-binomial model

Targeted significance levelb

RRa L n 0.050 0.010 0.0010 0.00010 0.000010

1:2 100 1000 0.050 0.0097 0.000092 0.000084 0.0000076

1:19 100 1000 0.050 0.0098 0.00099 0.00010 0.000010

1:2 100 10,000 0.049 0.0092 0.00083 0.000072 0.0000062

1:19 100 10,000 0.049 0.010 0.0012 0.00014 0.000018

1:2 1,000 1,000 0.050 0.0097 0.00091 0.000083 0.0000073

1:19 1,000 1,000 0.049 0.0095 0.00085 0.000071 0.0000060

1:2 1,000 10,000 0.050 0.0098 0.00091 0.000082 0.0000071

1:19 1,000 10,000 0.049 0.010 0.0012 .000015 0.000019

Average 0.0495 0.0098 0.00099 0.000010 0.000011

aFor RR = 1:2 and n = 1,000 (10,000), λ = 1.7 (7.8). For RR = 1:19 and n = 1,000 (10,000), λ = 5.9 (49.8). bThe beta-binomial model was used to generate data for single-nucleotide polymor-
phisms drawn from different populations, with structure identical to that measured by Marchini et al.7 from the Chinese and Japanese samples. n cases are sampled from these simulated popula-
tions according to the relative risk (RR) specified, n controls are sampled at random and then a test statistic is generated. The procedure is repeated many times. The fraction of statistics exceeding
the targeted level, determined by the F-distribution (F1,L), is then the realized significance level for the beta-binomial model. See Supplementary Note online for more information.
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In reply:
The main point of our original paper1 was
that even the relatively small levels of
structure in large populations cannot be
ignored in the coming generation of
association studies, effectively because of
the sizes of these studies (both sample size
and numbers of loci). We continue to
believe, however, that association studies
have a central role in unraveling the
genetic basis of common human diseases,
provided that population structure is
handled appropriately. One published
method for dealing with population
structure is Genomic Control (GC)2. Our
paper showed that GC typically performs
well but that there are some previously
unrecognized problems in certain settings.

We are delighted that our work
prompted Devlin and his colleagues to
correct this aspect of GC. Their new
procedure, GCF, represents an important
advance and should be used in place of the
original method. We also agree that this
approach to handling uncertainty in the
estimation of the correction factor λ is
better than the use of confidence limits3.

But whether the settings in which GC
had problems should be dismissed as
‘extreme’ is less clear. Of course the design
and analysis of studies should attempt to
control for stratification. This is not
simple to do in practice. First, there are
important unresolved empirical questions
about the levels and nature of such
structure in population groups (e.g.,
people of European descent in a particular
country or African Americans) and
unresolved statistical issues about how
best to use this kind of information in
study design and analysis. Second, in the
real world many studies will not meet
these worthy objectives, in some cases
because relevant confounding factors are
not known or not easily measured and in
other cases because investigators
apportion their limited resources in other

directions. Finally, as our paper noted1,
even with the best design and analysis,
there is likely to be a level of residual
structure after allowing for known
confounders. At present there is limited
relevant data to determine the probable
levels of residual structure, but the
simulations in our paper deliberately
included plausible scenarios for these.
Notably, in their original paper2, Devlin
and Roeder described the level of
population structure that we considered in
ref. 1 (F = 0.01 in their notation) as
“realistic”. Further, as noted in ref. 2,
cryptic relatedness poses as much of a
threat to association studies as does
geographic population structure and is
much more difficult to reduce by
experimental design. Preliminary analysis
of a large UK case-control study (886
cases, 878 controls, 8,000 markers) showed
substantial inflation of χ2 statistics even
after accounting for broad geographical
region, with a portion of this inflation
plausibly due to population structure (D.
Clayton, personal communication).

Although we are positive in general about
Bayesian statistical methods, we urge
caution against viewing the Bayesian
mixture approach (GCB), and more
generally false discovery rates4–6, as a
simple panacea to multiple testing issues.
There are not often free lunches. The idea
of GCB is to partition loci into two groups:
those associated with the disease (outlier
loci) and those not associated with the
disease, using a sensible statistical model,
and method, to assign loci to each group.
Informally, this will be easy if the test
statistics of outlier loci look very different
from those of nonassociated loci, which
would be the case if the genetic effects were
large and if there were moderate numbers
of loci in each category. On the other hand,
for the small effects appropriate to complex
diseases, genome scans with massive
numbers of nonassociated loci and a small

relative number of true disease loci, the tail
of the null distribution (after GC) of test
statistics may well overlap, or possibly even
bury, the few values from associated loci,
and no statistical procedure will reliably
separate the two. These kinds of settings
have not been extensively explored.

We conclude with two points of detail. It
is false that our original paper1 assumed
“subjects that originate from different
populations”. Much of our focus (e.g., Fig.
4c–e and Fig. 6 in ref. 1) deliberately (and
explicitly) concerned structure plausible
within current populations. Finally, there
are two different ways in which GC (or GCB
or GCF) could fail in practice: (i) the null
distribution of the test statistic may not
behave as a simple multiple of a χ2

distribution, or (ii) the statistical allowance
for the inflation factor may not be effective.
The ‘short cut’ simulations given by Devlin
et al. above presuppose that the first point
is not a problem. In the absence of a formal
mathematical proof, and with abundant
computing resources, it would seem better
to check routinely both aspects of GC, as in
their Table 1, rather than only the second,
as in their Figures 1 and 2.
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