Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cadmium is a mutagen that acts by inhibiting mismatch repair

Abstract

Most errors that arise during DNA replication can be corrected by DNA polymerase proofreading or by post-replication mismatch repair (MMR). Inactivation of both mutation-avoidance systems results in extremely high mutability that can lead to error catastrophe1,2. High mutability and the likelihood of cancer can be caused by mutations and epigenetic changes that reduce MMR3,4. Hypermutability can also be caused by external factors that directly inhibit MMR. Identifying such factors has important implications for understanding the role of the environment in genome stability. We found that chronic exposure of yeast to environmentally relevant concentrations of cadmium, a known human carcinogen5, can result in extreme hypermutability. The mutation specificity along with responses in proofreading-deficient and MMR-deficient mutants indicate that cadmium reduces the capacity for MMR of small misalignments and base-base mismatches. In extracts of human cells, cadmium inhibited at least one step leading to mismatch removal. Together, our data show that a high level of genetic instability can result from environmental impediment of a mutation-avoidance system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The impact of CdCl2 on mutation rates and viability in yeast.
Figure 2: Inhibition of in vitro human strand-specific DNA MMR in a repair-proficient cell extract by cadmium.

Similar content being viewed by others

References

  1. Schaaper, R.M. Base selection, proofreading, and mismatch repair during DNA replication in Escherichia coli. J. Biol. Chem. 268, 23762–23765 (1993).

    CAS  PubMed  Google Scholar 

  2. Morrison, A., Johnston, A.L., Johnston, L.H. & Sugino, A. Pathway correcting DNA replication errors in S. cerevisiae. EMBO J. 12, 1467–1473 (1993).

    Article  CAS  Google Scholar 

  3. Harfe, B.D. & Jinks-Robertson, S. DNA mismatch repair and genetic instability. Annu. Rev. Genet. 34, 359–399 (2000).

    Article  CAS  Google Scholar 

  4. Peltomaki, P. Deficient DNA mismatch repair: a common etiologic factor for colon cancer. Hum. Mol. Genet. 10, 735–740 (2001).

    Article  CAS  Google Scholar 

  5. Cadmium. in IARC Monographs on the Evaluation of Carcinogenic Risks to Humans 119–237 (IARC, Lyon, France, 1993).

  6. Gordenin, D.A. & Resnick, M.A. Yeast ARMs (DNA at-risk motifs) can reveal sources of genome instability. Mutat. Res. 400, 45–58 (1998).

    Article  CAS  Google Scholar 

  7. Marsischky, G.T., Filosi, N., Kane, M.F. & Kolodner, R. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev. 10, 407–420 (1996).

    Article  CAS  Google Scholar 

  8. Tran, H.T., Keen, J.D., Kricker, M., Resnick, M.A. & Gordenin, D.A. Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants. Mol. Cell. Biol. 17, 2859–2865 (1997).

    Article  CAS  Google Scholar 

  9. Tran, H.T., Gordenin, D.A. & Resnick, M.A. The 3′→5′ exonucleases of DNA polymerase δ and ε and the 5′→3′ exonuclease Exo1 have major roles in postreplication mutation avoidance in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 2000–2007 (1999).

    Article  CAS  Google Scholar 

  10. Drotschmann, K., Clark, A.B. & Kunkel, T.A. Mutator phenotypes of common polymorphisms and missense mutations in MSH2. Curr. Biol. 9, 907–910 (1999).

    Article  CAS  Google Scholar 

  11. Coleman, W.B. & Tsongalis, G.J. The role of genomic instability in human carcinogenesis. Anticancer Res. 19, 4645–4664 (1999).

    CAS  PubMed  Google Scholar 

  12. Kroutil, L.C., Register, K., Bebenek, K. & Kunkel, T.A. Exonucleolytic proofreading during replication of repetitive DNA. Biochemistry 35, 1046–1053 (1996).

    Article  CAS  Google Scholar 

  13. Sirover, M.A. & Loeb, L.A. Infidelity of DNA synthesis in vitro: screening for potential metal mutagens or carcinogens. Science 194, 1434–1436 (1976).

    Article  CAS  Google Scholar 

  14. Karthikeyan, G., Lewis, L.K. & Resnick, M.A. The mitochondrial protein frataxin prevents nuclear damage. Hum. Mol. Genet. 11, 1351–1362 (2002).

    Article  CAS  Google Scholar 

  15. Fauchon, M. et al. Sulfur sparing in the yeast proteome in response to sulfur demand. Mol. Cell 9, 713–723 (2002).

    Article  CAS  Google Scholar 

  16. Gary, R. et al. A novel role in DNA metabolism for the binding of Fen1/Rad27 to PCNA and implications for genetic risk. Mol. Cell. Biol. 19, 5373–5382 (1999).

    Article  CAS  Google Scholar 

  17. Hubscher, U., Maga, G. & Spadari, S. Eukaryotic DNA polymerases. Annu. Rev. Biochem. 71, 133–163 (2002).

    Article  CAS  Google Scholar 

  18. Morrison, A. & Sugino, A. The 3′→5′ exonucleases of both DNA polymerase δ and ε participate in correcting errors of DNA replication in S. cerevisiae. Mol. Gen. Genet. 242, 289–296 (1994).

    Article  CAS  Google Scholar 

  19. Umar, A. et al. Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis. Cell 87, 65–73 (1996).

    Article  CAS  Google Scholar 

  20. Waalkes, M.P. & Misra, R.R. Cadmium carcinogenicity and genotoxicity. in Toxicology of Metals (ed. Chang, L.W.) 231–243 (CRC, Boca Raton, 1996).

    Google Scholar 

  21. Beyersmann, D. & Hechtenberg, S. Cadmium, gene regulation, and cellular signalling in mammalian cells. Toxicol. Appl. Pharmacol. 144, 247–261 (1997).

    Article  CAS  Google Scholar 

  22. Hartwig, A. Zinc finger proteins as potential targets for toxic metal ions: differential effects on structure and function. Antioxid. Redox. Signal. 3, 625–634 (2001).

    Article  CAS  Google Scholar 

  23. Elinder, C.G. Normal values for cadmium in human tissues, blood, and urine in different countries. in Cadmium and Health: A Toxicological and Epidemiological Appraisal (eds. Friberg, L., Elinder, C.G., Kjellstrom, T. & Nordberg, G.F.) 81–102 (CRC, Boca Raton, 1985).

    Google Scholar 

  24. Mao, L. et al. Microsatellite alterations as clonal markers for the detection of human cancer. Proc. Natl. Acad. Sci. USA 91, 9871–9875 (1994).

    Article  CAS  Google Scholar 

  25. Leach, F.S. Microsatellite instability and prostate cancer: clinical and pathological implications. Curr. Opin. Urol. 12, 407–411 (2002).

    Article  Google Scholar 

  26. Giraud, A. et al. Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science 291, 2606–2608 (2001).

    Article  CAS  Google Scholar 

  27. Khromov-Borisov, N.N., Saffi, J. & Henriques, J.A.P. Perfect order plating: principle and applications. Technical Tips Online 1, t02638 (2002).

    Google Scholar 

  28. Harfe, B.D. & Jinks-Robertson, S. Sequence composition and context effects on the generation and repair of frameshift intermediates in mononucleotide runs in Saccharomyces cerevisiae. Genetics 156, 571–578 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Jin, Y.H. et al. The 3→5′ exonuclease of DNA polymerase δ can substitute for the 5′ flap endonuclease Rad27/Fen1 in processing Okazaki fragments and preventing genome instability. Proc. Natl. Acad. Sci. USA 98, 5122–5127 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Jinks-Robertson for yeast strains; J. Sterling, J. Choi and G. Horner for help in conducting experiments; and J. Drake, B. Van Houten, M. Waalkes, T. Petes and J. Wachsman for critically reading the manuscript and for advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry A Gordenin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, Y., Clark, A., Slebos, R. et al. Cadmium is a mutagen that acts by inhibiting mismatch repair. Nat Genet 34, 326–329 (2003). https://doi.org/10.1038/ng1172

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1172

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing