Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular evolution meets the genomics revolution

Abstract

Changes in technology in the past decade have had such an impact on the way that molecular evolution research is done that it is difficult now to imagine working in a world without genomics or the Internet. In 1992, GenBank was less than a hundredth of its current size and was updated every three months on a huge spool of tape. Homology searches took 30 minutes and rarely found a hit. Now it is difficult to find sequences with only a few homologs to use as examples for teaching bioinformatics. For molecular evolution researchers, the genomics revolution has showered us with raw data and the information revolution has given us the wherewithal to analyze it. In broad terms, the most significant outcome from these changes has been our newfound ability to examine the evolution of genomes as a whole, enabling us to infer genome-wide evolutionary patterns and to identify subsets of genes whose evolution has been in some way atypical.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timeline of developments in bioinformatics, genomics and molecular evolution, charted against the accumulation of DNA sequence information in GenBank, which was established in 1982.
Figure 2: Variation in base composition around the genome of Campylobacter jejuni.
Figure 3: Frequency of deletions and insertions in bacterial genomes.

Similar content being viewed by others

References

  1. Kimura, M. Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature 267, 275–276 (1977).

    Article  CAS  PubMed  Google Scholar 

  2. Fitch, W.M. Estimating the total number of nucleotide substitutions since the common ancestor of a pair of genes: comparison of several methods and three β hemoglobin messenger RNAs. J. Mol. Evol. 16, 153–209 (1980).

    Article  CAS  PubMed  Google Scholar 

  3. Li, W.-H., Gojobori, T. & Nei, M. Pseudogenes as a paradigm of neutral evolution. Nature 292, 237–239 (1981).

    Article  CAS  PubMed  Google Scholar 

  4. Ohno, S. Evolution by Gene Duplication (George Allen and Unwin, London, 1970).

    Book  Google Scholar 

  5. Betran, E., Wang, W., Jin, L. & Long, M. Evolution of the phosphoglycerate mutase processed gene in human and chimpanzee revealing the origin of a new primate gene. Mol. Biol. Evol. 19, 654–663 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Long, M. Evolution of novel genes. Curr. Opin. Genet. Dev. 11, 673–680 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Lynch, M. & Conery, J.S. The evolutionary fate and consequences of duplicate genes. Science 290, 1151–1155 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Force, A. et al. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531–1545 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wolfe, K.H. Yesterday's polyploids and the mystery of diploidization. Nat. Rev. Genet. 2, 333–341 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. McLysaght, A., Hokamp, K. & Wolfe, K.H. Extensive genomic duplication during early chordate evolution. Nat. Genet. 31, 200–204 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Gu, X., Wang, Y. & Gu, J. Age distribution of human gene families shows significant roles of both large- and small-scale duplications in vertebrate evolution. Nat. Genet. 31, 205–209 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Abi-Rached, L., Gilles, A., Shiina, T., Pontarotti, P. & Inoko, H. Evidence of en bloc duplication in vertebrate genomes. Nat. Genet. 31, 100–105 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Kashkush, K., Feldman, M. & Levy, A.A. Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160, 1651–1659 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Comai, L. et al. Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell 12, 1551–1568 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee, H.S. & Chen, Z.J. Protein-coding genes are epigenetically regulated in Arabidopsis polyploids. Proc. Natl. Acad. Sci. USA 98, 6753–6758 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Adams, K.L., Daley, D.O., Qiu, Y.-L., Whelan, J. & Palmer, J.D. Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants. Nature 408, 354–357 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Adams, K.L., Qiu, Y.L., Stoutemyer, M. & Palmer, J.D. Punctuated evolution of mitochondrial gene content: high and variable rates of mitochondrial gene loss and transfer to the nucleus during angiosperm evolution. Proc. Natl. Acad. Sci. USA 99, 9905–9912 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kadowaki, K., Kubo, N., Ozawa, K. & Hirai, A. Targeting presequence acquisition after mitochondrial gene transfer to the nucleus occurs by duplication of existing targeting signals. EMBO J. 15, 6652–6661 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kubo, N., Harada, K., Hirai, A. & Kadowaki, K. A single nuclear transcript encoding mitochondrial RPS14 and SDHB of rice is processed by alternative splicing: common use of the same mitochondrial targeting signal for different proteins. Proc. Natl. Acad. Sci. USA 96, 9207–9211 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Courseaux, A. & Nahon, J.L. Birth of two chimeric genes in the Hominidae lineage. Science 291, 1293–1297 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Eichler, E.E. Recent duplication, domain accretion and the dynamic mutation of the human genome. Trends Genet. 17, 661–669 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Long, M. & Langley, C.H. Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science 260, 91–95 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Wang, W., Brunet, F.G., Nevo, E. & Long, M. Origin of sphinx, a young chimeric RNA gene in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 99, 4448–4453 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moran, J.V., DeBerardinis, R.J. & Kazazian, H.H. Jr. Exon shuffling by L1 retrotransposition. Science 283, 1530–1534 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Pickeral, O.K., Makalowski, W., Boguski, M.S. & Boeke, J.D. Frequent human genomic DNA transduction driven by LINE-1 retrotransposition. Genome Res. 10, 411–415 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Korneev, S. & O'Shea, M. Evolution of nitric oxide synthase regulatory genes by DNA inversion. Mol. Biol. Evol. 19, 1228–1233 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Johnson, M.E. et al. Positive selection of a gene family during the emergence of humans and African apes. Nature 413, 514–519 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Lipovich, L., Hughes, A.L., King, M.C., Abkowitz, J.L. & Quigley, J.G. Genomic structure and evolutionary context of the human feline leukemia virus subgroup C receptor (hFLVCR) gene: evidence for block duplications and de novo gene formation within duplicons of the hFLVCR locus. Gene 286, 203–213 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Chen, L., DeVries, A.L. & Cheng, C.H. Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proc. Natl. Acad. Sci. USA 94, 3811–3816 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, L., DeVries, A.L. & Cheng, C.H. Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod. Proc. Natl. Acad. Sci. USA 94, 3817–3822 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Parkhill, J. et al. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413, 848–852 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. McClelland, M. et al. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413, 852–856 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Porwollik, S., Wong, R.M. & McClelland, M. Evolutionary genomics of Salmonella: gene acquisitions revealed by microarray analysis. Proc. Natl. Acad. Sci. USA 99, 8956–8961 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Perna, N.T. et al. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409, 529–533 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Malpertuy, A. et al. Genomic exploration of the hemiascomycetous yeasts: 19. Ascomycetes-specific genes. FEBS Lett. 487, 113–121 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. McDonald, J.H. & Kreitman, M. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351, 652–654 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Yang, Z. Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol. Biol. Evol. 15, 568–573 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Suzuki, Y. & Gojobori, T. A method for detecting positive selection at single amino acid sites. Mol. Biol. Evol. 16, 1315–1328 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Suzuki, Y. & Nei, M. Reliabilities of parsimony-based and likelihood-based methods for detecting positive selection at single amino acid sites. Mol. Biol. Evol. 18, 2179–2185 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Yang, Z. & Nielsen, R. Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol. Biol. Evol. 19, 908–917 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Hughes, A.L. & Nei, M. Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335, 167–170 (1988).

    Article  CAS  PubMed  Google Scholar 

  42. Tanaka, T. & Nei, M. Positive darwinian selection observed at the variable-region genes of immunoglobulins. Mol. Biol. Evol. 6, 447–459 (1989).

    CAS  PubMed  Google Scholar 

  43. Hughes, A.L., Ota, T. & Nei, M. Positive Darwinian selection promotes charge profile diversity in the antigen-binding cleft of class I major-histocompatibility-complex molecules. Mol. Biol. Evol. 7, 515–524 (1990).

    CAS  PubMed  Google Scholar 

  44. Riley, M.A. Positive selection for colicin diversity in bacteria. Mol. Biol. Evol. 10, 1048–1059 (1993).

    CAS  PubMed  Google Scholar 

  45. Zhang, J., Rosenberg, H.F. & Nei, M. Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc. Natl. Acad. Sci. USA 95, 3708–3713 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, J., Zhang, Y.P. & Rosenberg, H.F. Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey. Nat. Genet. 30, 411–415 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Hughes, A.L. Circumsporozoite protein genes of malaria parasites (Plasmodium spp.): evidence for positive selection on immunogenic regions. Genetics 127, 345–353 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hughes, A.L. Positive selection and interallelic recombination at the merozoite surface antigen-1 (MSA-1) locus of Plasmodium falciparum. Mol. Biol. Evol. 9, 381–393 (1992).

    CAS  PubMed  Google Scholar 

  49. Bonhoeffer, S., Holmes, E.C. & Nowak, M.A. Causes of HIV diversity. Nature 376, 125 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Yamaguchi-Kabata, Y. & Gojobori, T. Reevaluation of amino acid variability of the human immunodeficiency virus type 1 gp120 envelope glycoprotein and prediction of new discontinuous epitopes. J. Virol. 74, 4335–4350 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee, Y.H., Ota, T. & Vacquier, V.D. Positive selection is a general phenomenon in the evolution of abalone sperm lysin. Mol. Biol. Evol. 12, 231–238 (1995).

    CAS  PubMed  Google Scholar 

  52. Metz, E.C. & Palumbi, S.R. Positive selection and sequence rearrangements generate extensive polymorphism in the gamete recognition protein bindin. Mol. Biol. Evol. 13, 397–406 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Palumbi, S.R. All males are not created equal: fertility differences depend on gamete recognition polymorphisms in sea urchins. Proc. Natl. Acad. Sci. USA 96, 12632–12637 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Aguade, M., Miyashita, N. & Langley, C.H. Polymorphism and divergence in the Mst26A male accessory gland gene region in Drosophila. Genetics 132, 755–770 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Tsaur, S.C. & Wu, C.I. Positive selection and the molecular evolution of a gene of male reproduction, Acp26Aa of Drosophila. Mol. Biol. Evol. 14, 544–549 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Tsaur, S.C., Ting, C.T. & Wu, C.I. Positive selection driving the evolution of a gene of male reproduction, Acp26Aa, of Drosophila: II. Divergence versus polymorphism. Mol. Biol. Evol. 15, 1040–1046 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Swanson, W.J., Clark, A.G., Waldrip-Dail, H.M., Wolfner, M.F. & Aquadro, C.F. Evolutionary EST analysis identifies rapidly evolving male reproductive proteins in Drosophila. Proc. Natl. Acad. Sci. USA 98, 7375–7379 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Maston, G.A. & Ruvolo, M. Chorionic gonadotropin has a recent origin within primates and an evolutionary history of selection. Mol. Biol. Evol. 19, 320–335 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Messier, W. & Stewart, C.B. Episodic adaptive evolution of primate lysozymes. Nature 385, 151–154 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Kimura, M. Evolutionary rate at the molecular level. Nature 217, 624–626 (1968).

    Article  CAS  PubMed  Google Scholar 

  61. Smith, N.G. & Eyre-Walker, A. Adaptive protein evolution in Drosophila. Nature 415, 1022–1024 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Fay, J.C., Wyckoff, G.J. & Wu, C.I. Positive and negative selection on the human genome. Genetics 158, 1227–1234 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Fay, J.C., Wyckoff, G.J. & Wu, C.I. Testing the neutral theory of molecular evolution with genomic data from Drosophila. Nature 415, 1024–1026 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge Univ. Press, Cambridge, 1983).

    Book  Google Scholar 

  65. Roberts, J.D., Izuta, S., Thomas, D.C. & Kunkel, T.A. Mispair-, site-, and strand-specific error rates during simian virus 40 origin-dependent replication in vitro with excess deoxythymidine triphosphate. J. Biol. Chem. 269, 1711–1717 (1994).

    CAS  PubMed  Google Scholar 

  66. Fijalkowska, I.J., Jonczyk, P., Tkaczyk, M.M., Bialoskorska, M. & Schaaper, R.M. Unequal fidelity of leading strand and lagging strand DNA replication on the Escherichia coli chromosome. Proc. Natl. Acad. Sci. USA 95, 10020–10025 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Francino, M.P. & Ochman, H. Strand asymmetries in DNA evolution. Trends Genet. 13, 240–245 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Frank, A.C. & Lobry, J.R. Asymmetric substitution patterns: a review of possible underlying mutational or selective mechanisms. Gene 238, 65–77 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Lobry, J.R. Asymmetric substitution patterns in the two DNA strands of bacteria. Mol. Biol. Evol. 13, 660–665 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Tillier, E.R. & Collins, R.A. The contributions of replication orientation, gene direction, and signal sequences to base-composition asymmetries in bacterial genomes. J. Mol. Evol. 50, 249–257 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Rocha, E.P. & Danchin, A. Ongoing evolution of strand composition in bacterial genomes. Mol. Biol. Evol. 18, 1789–1799 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Jermiin, L.S., Graur, D. & Crozier, R.H. Evidence from analyses of intergenic regions for strand-specific directional mutation pressure in metazoan mitochondrial DNA. Mol. Biol. Evol. 12, 558–563 (1995).

    CAS  Google Scholar 

  73. Perna, N.T. & Kocher, T.D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 41, 353–358 (1995).

    Article  CAS  PubMed  Google Scholar 

  74. Tanaka, M. & Ozawa, T. Strand asymmetry in human mitochondrial DNA mutations. Genomics 22, 327–335 (1994).

    Article  CAS  PubMed  Google Scholar 

  75. Reyes, A., Gissi, C., Pesole, G. & Saccone, C. Asymmetrical directional mutation pressure in the mitochondrial genome of mammals. Mol. Biol. Evol. 15, 957–966 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Francino, M.P. & Ochman, H. Deamination as the basis of strand-asymmetric evolution in transcribed Escherichia coli sequences. Mol. Biol. Evol. 18, 1147–1150 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Beletskii, A. & Bhagwat, A.S. Correlation between transcription and C to T mutations in the non-transcribed DNA strand. Biol. Chem. 379, 549–551 (1998).

    CAS  PubMed  Google Scholar 

  78. Karlin, S., Campbell, A.M. & Mrazek, J. Comparative DNA analysis across diverse genomes. Annu. Rev. Genet. 32, 185–225 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Francino, M.P. & Ochman, H. Strand symmetry around the β-globin origin of replication in primates. Mol. Biol. Evol. 17, 416–422 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Gierlik, A., Kowalczuk, M., Mackiewicz, P., Dudek, M.R. & Cebrat, S. Is there replication-associated mutational pressure in the Saccharomyces cerevisiae genome? J. Theor. Biol. 202, 305–314 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Mrázek, J. & Karlin, S. Strand compositional asymmetry in bacterial and large viral genomes. Proc. Natl. Acad. Sci. USA 95, 3720–3725 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  82. McLean, M.J., Wolfe, K.H. & Devine, K.M. Base composition skews, replication orientation, and gene orientation in 12 prokaryote genomes. J. Mol. Evol. 47, 691–696 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Myllykallio, H. et al. Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon. Science 288, 2212–2215 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. McInerney, J.O. Replicational and transcriptional selection on codon usage in Borrelia burgdorferi. Proc. Natl. Acad. Sci. USA 95, 10698–10703 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lafay, B. et al. Proteome composition and codon usage in spirochaetes: species-specific and DNA strand-specific mutation biases. Nucleic Acids Res. 27, 1642–1649 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tillier, E.R. & Collins, R.A. Replication orientation affects the rate and direction of bacterial gene evolution. J. Mol. Evol. 51, 459–463 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Szczepanik, D. et al. Evolution rates of genes on leading and lagging DNA strands. J. Mol. Evol. 52, 426–433 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Haldane, J.B.S. The rate of spontaneous mutation of a human gene. J. Genet. 31, 317–326 (1935).

    Article  Google Scholar 

  89. Miyata, T., Hayashida, H., Kuma, K., Mitsuyasu, K. & Yasunaga, T. Male-driven molecular evolution: a model and nucleotide sequence analysis. Cold Spring Harb. Symp. Quant. Biol. 52, 863–867 (1987).

    Article  CAS  PubMed  Google Scholar 

  90. Li, W.H., Ellsworth, D.L., Krushkal, J., Chang, B.H. & Hewett-Emmett, D. Rates of nucleotide substitution in primates and rodents and the generation-time effect hypothesis. Mol. Phyl. Evol. 5, 182–187 (1996).

    Article  CAS  Google Scholar 

  91. McVean, G.T. & Hurst, L.D. Evidence for a selectively favourable reduction in the mutation rate of the X chromosome. Nature 386, 388–392 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Ellegren, H. & Fridolfsson, A.K. Male-driven evolution of DNA sequences in birds. Nature Genet. 17, 182–184 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Makova, K.D. & Li, W.H. Strong male-driven evolution of DNA sequences in humans and apes. Nature 416, 624–626 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Filipski, J. Why the rate of silent codon substitutions is variable within a vertebrate's genome. J. Theor. Biol. 134, 159–164 (1988).

    Article  CAS  PubMed  Google Scholar 

  95. Wolfe, K.H., Sharp, P.M. & Li, W.H. Mutation rates differ among regions of the mammalian genome. Nature 337, 283–285 (1989).

    Article  CAS  PubMed  Google Scholar 

  96. Matassi, G., Sharp, P.M. & Gautier, C. Chromosomal location effects on gene sequence evolution in mammals. Curr. Biol. 9, 786–791 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Gu, Z., Wang, H., Nekrutenko, A. & Li, W.H. Densities, length proportions, and other distributional features of repetitive sequences in the human genome estimated from 430 megabases of genomic sequence. Gene 259, 81–88 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Kumar, S. & Subramanian, S. Mutation rates in mammalian genomes. Proc. Natl. Acad. Sci. USA 99, 803–808 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lercher, M.J., Williams, E.J. & Hurst, L.D. Local similarity in evolutionary rates extends over whole chromosomes in human-rodent and mouse-rat comparisons: implications for understanding the mechanistic basis of the male mutation bias. Mol. Biol. Evol. 18, 2032–2039 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Ebersberger, I., Metzler, D., Schwarz, C. & Paabo, S. Genomewide comparison of DNA sequences between humans and chimpanzees. Am. J. Hum. Genet. 70, 1490–1497 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bielawski, J.P., Dunn, K.A. & Yang, Z. Rates of nucleotide substitution and mammalian nuclear gene evolution. Approximate and maximum-likelihood methods lead to different conclusions. Genetics 156, 1299–1308 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Smith, N.G. & Hurst, L.D. The effect of tandem substitutions on the correlation between synonymous and nonsynonymous rates in rodents. Genetics 153, 1395–1402 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Nekrutenko, A. & Li, W.H. Assessment of compositional heterogeneity within and between eukaryotic genomes. Genome Res. 10, 1986–1995 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Strathern, J.N., Shafer, B.K. & McGill, C.B. DNA synthesis errors associated with double-strand-break repair. Genetics 140, 965–972 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Perry, J. & Ashworth, A. Evolutionary rate of a gene affected by chromosomal position. Curr. Biol. 9, 987–989 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Gerton, J.L. et al. Global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 97, 11383–11390 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Birdsell, J.A. Integrating genomics, bioinformatics, and classical genetics to study the effects of recombination on genome evolution. Mol. Biol. Evol. 19, 1181–1197 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Takano-Shimizu, T. Local changes in GC/AT substitution biases and in crossover frequencies on Drosophila chromosomes. Mol. Biol. Evol. 18, 606–619 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Brown, T.C. & Jiricny, J. Different base/base mispairs are corrected with different efficiencies and specificities in monkey kidney cells. Cell 54, 705–711 (1988).

    Article  CAS  PubMed  Google Scholar 

  110. Fullerton, S.M., Bernardo Carvalho, A. & Clark, A.G. Local rates of recombination are positively correlated with GC content in the human genome. Mol. Biol. Evol. 18, 1139–1142 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Blumenthal, T. et al. A global analysis of Caenorhabditis elegans operons. Nature 417, 851–854 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. von Mering, C. & Bork, P. Teamed up for transcription. Nature 417, 797–798 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Wang, P.J., McCarrey, J.R., Yang, F. & Page, D.C. An abundance of X-linked genes expressed in spermatogonia. Nat. Genet. 27, 422–426 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Roy, P.J., Stuart, J.M., Lund, J. & Kim, S.K. Chromosomal clustering of muscle-expressed genes in Caenorhabditis elegans. Nature 418, 975–979 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Spellman, P.T. & Rubin, G.M. Evidence for large domains of similarly expressed genes in the Drosophila genome. J. Biol. 1, 5 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Cohen, B.A., Mitra, R.D., Hughes, J.D. & Church, G.M. A computational analysis of whole-genome expression data reveals chromosomal domains of gene expression. Nat. Genet. 26, 183–186 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Kruglyak, S. & Tang, H. Regulation of adjacent yeast genes. Trends Genet. 16, 109–111 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Mannila, H., Patrikainen, A., Seppanen, J.K. & Kere, J. Long-range control of expression in yeast. Bioinformatics 18, 482–483 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Lercher, M.J., Urrutia, A.O. & Hurst, L.D. Clustering of housekeeping genes provides a unified model of gene order in the human genome. Nat. Genet. 31, 180–183 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Dehal, P. et al. Human chromosome 19 and related regions in mouse: conservative and lineage-specific evolution. Science 293, 104–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Mural, R.J. et al. A comparison of whole-genome shotgun-derived mouse chromosome 16 and the human genome. Science 296, 1661–1671 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Seoighe, C. et al. Prevalence of small inversions in yeast gene order evolution. Proc. Natl. Acad. Sci. USA 97, 14433–14437 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Coghlan, A. & Wolfe, K.H. Fourfold faster rate of genome rearrangement in nematodes than in Drosophila. Genome Res. 12, 857–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gilley, J. & Fried, M. Extensive gene order differences within regions of conserved synteny between the Fugu and human genomes: implications for chromosomal evolution and the cloning of disease genes. Hum. Mol. Genet. 8, 1313–1320 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. SanMiguel, P., Gaut, B.S., Tikhonov, A., Nakajima, Y. & Bennetzen, J.L. The paleontology of intergene retrotransposons of maize. Nature Genet. 20, 43–45 (1998).

    Article  CAS  PubMed  Google Scholar 

  126. Petrov, D.A., Sangster, T.A., Johnston, J.S., Hartl, D.L. & Shaw, K.L. Evidence for DNA loss as a determinant of genome size. Science 287, 1060–1062 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Bensasson, D., Petrov, D.A., Zhang, D.X., Hartl, D.L. & Hewitt, G.M. Genomic gigantism: DNA loss is slow in mountain grasshoppers. Mol. Biol. Evol. 18, 246–253 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Douglas, S. et al. The highly reduced genome of an enslaved algal nucleus. Nature 410, 1091–1096 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Gilson, P.R. & McFadden, G.I. The miniaturized nuclear genome of eukaryotic endosymbiont contains genes that overlap, genes that are cotranscribed, and the smallest known spliceosomal introns. Proc. Natl. Acad. Sci. USA 93, 7737–7742 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gilson, P.R. & McFadden, G.I. Jam packed genomes—a preliminary, comparative analysis of nucleomorphs. Genetica 115, 13–28 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Peyret, P. et al. Sequence and analysis of chromosome I of the amitochondriate intracellular parasite Encephalitozoon cuniculi (Microspora). Genome Res. 11, 198–207 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Katinka, M.D. et al. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414, 450–453 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Graur, D. & Li, W.-H. Fundamentals of Molecular Evolution 443 (Sinauer, Sunderland, MA, 1999).

    Google Scholar 

  134. Zipkas, D. & Riley, M. Proposal concerning mechanism of evolution of the genome of Escherichia coli. Proc. Natl. Acad. Sci. USA 72, 1354–1358 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Riley, M. & Labedan, B. Protein evolution viewed through Escherichia coli protein sequences: introducing the notion of a structural segment of homology, the module. J. Mol. Biol. 268, 857–868 (1997).

    Article  CAS  PubMed  Google Scholar 

  136. Herdman, M. The evolution of bacterial genomes. In The Evolution of Genome Size (ed. Cavalier-Smith, T.) 37–68 (John Wiley and Sons, Chichester 1985).

    Google Scholar 

  137. Andersson, S.G. & Kurland, C.G. Reductive evolution of resident genomes. Trends Microbiol. 6, 263–268 (1998).

    Article  CAS  PubMed  Google Scholar 

  138. Nelson, K.E. et al. Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature 399, 323–329 (1999).

    Article  CAS  PubMed  Google Scholar 

  139. Ochman, H., Lawrence, J.G. & Groisman, E.A. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304 (2000).

    Article  CAS  PubMed  Google Scholar 

  140. Jordan, I.K., Makarova, K.S., Spouge, J.L., Wolf, Y.I. & Koonin, E.V. Lineage-specific gene expansions in bacterial and archaeal genomes. Genome Res. 11, 555–565 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Bentley, S.D. et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147 (2002).

    Article  PubMed  Google Scholar 

  142. Mira, A., Ochman, H. & Moran, N.A. Deletional bias and the evolution of bacterial genomes. Trends Genet. 17, 589–596 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Moran, N.A. Microbial minimalism: genome reduction in bacterial pathogens. Cell 108, 583–586 (2002).

    Article  CAS  PubMed  Google Scholar 

  144. Maniloff, J. The minimal cell genome: 'on being the right size'. Proc. Natl. Acad. Sci. USA 93, 10004–10006 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Andersson, J.O. & Andersson, S.G. Pseudogenes, junk DNA, and the dynamics of Rickettsia genomes. Mol. Biol. Evol. 18, 829–839 (2001).

    Article  CAS  PubMed  Google Scholar 

  146. Clark, M.A., Baumann, L., Thao, M.L., Moran, N.A. & Baumann, P. Degenerative minimalism in the genome of a psyllid endosymbiont. J. Bacteriol. 183, 1853–1861 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Andersson, S.G. et al. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396, 133–140 (1998).

    Article  CAS  PubMed  Google Scholar 

  148. Koonin, E.V. How many genes can make a cell: the minimal-gene-set concept. Annu. Rev. Genomics Hum. Genet. 1, 99–116 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Souciet, J. et al. Genomic exploration of the hemiascomycetous yeasts: 1. A set of yeast species for molecular evolution studies. FEBS Lett. 487, 3–12 (2000).

    Article  PubMed  Google Scholar 

  150. Pennisi, E. Chimps and fungi make genome 'top six'. Science 296, 1589–1591 (2002).

    Article  CAS  PubMed  Google Scholar 

  151. Thomas, J.W. & Touchman, J.W. Vertebrate genome sequencing: building a backbone for comparative genomics. Trends Genet. 18, 104–108 (2002).

    Article  CAS  PubMed  Google Scholar 

  152. Markert, C.L. Cellular differentiation—an expression of differential gene function. In Congenital Malformations 163–174 (International Medical Congress, New York, 1964).

    Google Scholar 

  153. Ferris, S.D. & Whitt, G.S. Evolution of the differential regulation of duplicate genes after polyploidization. J. Mol. Evol. 12, 267–317 (1979).

    Article  CAS  PubMed  Google Scholar 

  154. Wagner, A. Decoupled evolution of coding region and mRNA expression patterns after gene duplication: implications for the neutralist-selectionist debate. Proc. Natl. Acad. Sci. USA 97, 6579–6584 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Li, W.-H. Molecular Evolution (Sinauer, Sunderland, MA, 1997).

    Google Scholar 

  156. Makalowski, W. & Boguski, M.S. Evolutionary parameters of the transcribed mammalian genome: an analysis of 2,820 orthologous rodent and human sequences. Proc. Natl. Acad. Sci. USA 95, 9407–9412 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Gu, Z., Nicolae, D., Lu, H.H.-S. & Li, W.-H. Rapid divergence in expression between duplicate genes inferred from microarray gene expression data. Trends Genet. 18, 609–613 (2002).

    Article  CAS  PubMed  Google Scholar 

  158. Wagner, A. The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Mol. Biol. Evol. 18, 1283–1292 (2001).

    Article  CAS  PubMed  Google Scholar 

  159. Fraser, H.B., Hirsh, A.E., Steinmetz, L.M., Scharfe, C. & Feldman, M.W. Evolutionary rate in the protein interaction network. Science 296, 750–752 (2002).

    Article  CAS  PubMed  Google Scholar 

  160. Hirsh, A.E. & Fraser, H.B. Protein dispensability and rate of evolution. Nature 411, 1046–1049 (2001).

    Article  CAS  PubMed  Google Scholar 

  161. Papp, B., Pal, C. & Hurst, L.D. Gene dispensibility does not determine the rate of evolution. Nature (in the press).

  162. Wilson, A.C., Carlson, S.S. & White, T., J. Biochemical evolution. Annu. Rev. Biochem. 46, 573–639 (1977).

    Article  CAS  PubMed  Google Scholar 

  163. Hughes, A.L. The evolution of the type I interferon gene family in mammals. J. Mol. Evol. 41, 539–548 (1995).

    Article  CAS  PubMed  Google Scholar 

  164. Endo, T., Ikeo, K. & Gojobori, T. Large-scale search for genes on which positive selection may operate. Mol. Biol. Evol. 13, 685–690 (1996).

    Article  CAS  PubMed  Google Scholar 

  165. Goodwin, R.L., Baumann, H. & Berger, F.G. Patterns of divergence during evolution of α1-proteinase inhibitors in mammals. Mol. Biol. Evol. 13, 346–358 (1996).

    Article  CAS  PubMed  Google Scholar 

  166. Hughes, A.L. & Yeager, M. Coordinated amino acid changes in the evolution of mammalian defensins. J. Mol. Evol. 44, 675–682 (1997).

    Article  CAS  PubMed  Google Scholar 

  167. Kitano, T., Sumiyama, K., Shiroishi, T. & Saitou, N. Conserved evolution of the Rh50 gene compared to its homologous Rh blood group gene. Biochem. Biophys. Res. Commun. 249, 78–85 (1998).

    Article  CAS  PubMed  Google Scholar 

  168. Wyckoff, G.J., Wang, W. & Wu, C.I. Rapid evolution of male reproductive genes in the descent of man. Nature 403, 304–309 (2000).

    Article  CAS  PubMed  Google Scholar 

  169. Qi, C.F. et al. Molecular phylogeny of Fv1. Mamm. Genome 9, 1049–1055 (1998).

    Article  CAS  PubMed  Google Scholar 

  170. Ford, M.J., Thornton, P.J. & Park, L.K. Natural selection promotes divergence of transferrin among salmonid species. Mol. Ecol. 8, 1055–1061 (1999).

    Article  CAS  PubMed  Google Scholar 

  171. Singhania, N.A. et al. Rapid evolution of the ribonuclease A superfamily: adaptive expansion of independent gene clusters in rats and mice. J. Mol. Evol. 49, 721–728 (1999).

    Article  CAS  PubMed  Google Scholar 

  172. Bishop, J.G., Dean, A.M. & Mitchell-Olds, T. Rapid evolution in plant chitinases: molecular targets of selection in plant–pathogen coevolution. Proc. Natl. Acad. Sci. USA 97, 5322–5327 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Baum, J., Ward, R.H. & Conway, D.J. Natural selection on the erythrocyte surface. Mol. Biol. Evol. 19, 223–229 (2002).

    Article  CAS  PubMed  Google Scholar 

  174. Zhang, J. & Nei, M. Positive selection in the evolution of mammalian interleukin-2 genes. Mol. Biol. Evol. 17, 1413–1416 (2000).

    Article  CAS  PubMed  Google Scholar 

  175. Hughes, M.K. & Hughes, A.L. Natural selection on Plasmodium surface proteins. Mol. Biochem. Parasitol. 71, 99–113 (1995).

    Article  CAS  PubMed  Google Scholar 

  176. Smith, N.H., Maynard Smith, J. & Spratt, B.G. Sequence evolution of the porB gene of Neisseria gonorrhoeae and Neisseria meningitidis: evidence of positive Darwinian selection. Mol. Biol. Evol. 12, 363–370 (1995).

    CAS  PubMed  Google Scholar 

  177. Baric, R.S., Yount, B., Hensley, L., Peel, S.A. & Chen, W. Episodic evolution mediates interspecies transfer of a murine coronavirus. J. Virol. 71, 1946–1955 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Fitch, W.M., Bush, R.M., Bender, C.A. & Cox, N.J. Long term trends in the evolution of H(3) HA1 human influenza type A. Proc. Natl. Acad. Sci. USA 94, 7712–7718 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Wu, J.C. et al. Recombination of hepatitis D virus RNA sequences and its implications. Mol. Biol. Evol. 16, 1622–1632 (1999).

    Article  CAS  PubMed  Google Scholar 

  180. Zanotto, P.M., Kallas, E.G., de Souza, R.F. & Holmes, E.C. Genealogical evidence for positive selection in the nef gene of HIV-1. Genetics 153, 1077–1089 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Haydon, D.T., Bastos, A.D., Knowles, N.J. & Samuel, A.R. Evidence for positive selection in foot-and-mouth disease virus capsid genes from field isolates. Genetics 157, 7–15 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Aguade, M. Positive selection drives the evolution of the Acp29AB accessory gland protein in Drosophila. Genetics 152, 543–551 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Hellberg, M.E. & Vacquier, V.D. Rapid evolution of fertilization selectivity and lysin cDNA sequences in teguline gastropods. Mol. Biol. Evol. 16, 839–848 (1999).

    Article  CAS  PubMed  Google Scholar 

  184. Swanson, W.J., Aquadro, C.F. & Vacquier, V.D. Polymorphism in abalone fertilization proteins is consistent with the neutral evolution of the egg's receptor for lysin (VERL) and positive darwinian selection of sperm lysin. Mol. Biol. Evol. 18, 376–383 (2001).

    Article  CAS  PubMed  Google Scholar 

  185. Pamilo, P. & O'Neill, R.J. Evolution of the Sry genes. Mol. Biol. Evol. 14, 49–55 (1997).

    Article  CAS  PubMed  Google Scholar 

  186. Vacquier, V.D., Swanson, W.J. & Lee, Y.H. Positive Darwinian selection on two homologous fertilization proteins: what is the selective pressure driving their divergence? J. Mol. Evol. 44, S15–22 (1997).

    Article  CAS  PubMed  Google Scholar 

  187. Ishimizu, T. et al. Identification of regions in which positive selection may operate in S-RNase of Rosaceae: implication for S-allele-specific recognition sites in S-RNase. FEBS Lett. 440, 337–342 (1998).

    Article  CAS  PubMed  Google Scholar 

  188. Karn, R.C. & Nachman, M.W. Reduced nucleotide variability at an androgen-binding protein locus (Abpa) in house mice: evidence for positive natural selection. Mol. Biol. Evol. 16, 1192–1197 (1999).

    Article  CAS  PubMed  Google Scholar 

  189. Rooney, A.P. & Zhang, J. Rapid evolution of a primate sperm protein: relaxation of functional constraint or positive Darwinian selection? Mol. Biol. Evol. 16, 706–710 (1999).

    Article  CAS  PubMed  Google Scholar 

  190. Hellberg, M.E., Moy, G.W. & Vacquier, V.D. Positive selection and propeptide repeats promote rapid interspecific divergence of a gastropod sperm protein. Mol. Biol. Evol. 17, 458–466 (2000).

    Article  CAS  PubMed  Google Scholar 

  191. Eanes, W.F., Kirchner, M. & Yoon, J. Evidence for adaptive evolution of the G6pd gene in the Drosophila melanogaster and Drosophila simulans lineages. Proc. Natl. Acad. Sci. USA 90, 7475–7479 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Nakashima, K. et al. Accelerated evolution in the protein-coding regions is universal in crotalinae snake venom gland phospholipase A2 isozyme genes. Proc. Natl. Acad. Sci. USA 92, 5605–5609 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Shields, D.C., Harmon, D.L. & Whitehead, A.S. Evolution of hemopoietic ligands and their receptors. Influence of positive selection on correlated replacements throughout ligand and receptor proteins. J. Immunol. 156, 1062–1070 (1996).

    CAS  PubMed  Google Scholar 

  194. Wallis, M. The molecular evolution of vertebrate growth hormones: a pattern of near-stasis interrupted by sustained bursts of rapid change. J. Mol. Evol. 43, 93–100 (1996).

    Article  CAS  PubMed  Google Scholar 

  195. Liu, J.C., Makova, K.D., Adkins, R.M., Gibson, S. & Li, W.H. Episodic evolution of growth hormone in primates and emergence of the species specificity of human growth hormone receptor. Mol. Biol. Evol. 18, 945–953 (2001).

    Article  CAS  PubMed  Google Scholar 

  196. Sutton, K.A. & Wilkinson, M.F. Rapid evolution of a homeodomain: evidence for positive selection. J. Mol. Evol. 45, 579–588 (1997).

    Article  CAS  PubMed  Google Scholar 

  197. Ward, T.J., Honeycutt, R.L. & Derr, J.N. Nucleotide sequence evolution at the κ-casein locus: evidence for positive selection within the family Bovidae. Genetics 147, 1863–1872 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Wu, W., Goodman, M., Lomax, M.I. & Grossman, L.I. Molecular evolution of cytochrome c oxidase subunit IV: evidence for positive selection in simian primates. J. Mol. Evol. 44, 477–491 (1997).

    Article  CAS  PubMed  Google Scholar 

  199. Bargelloni, L., Marcato, S. & Patarnello, T. Antarctic fish hemoglobins: evidence for adaptive evolution at subzero temperature. Proc. Natl. Acad. Sci. USA 95, 8670–8675 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Ting, C.T., Tsaur, S.C., Wu, M.L. & Wu, C.I. A rapidly evolving homeobox at the site of a hybrid sterility gene. Science 282, 1501–1504 (1998).

    Article  CAS  PubMed  Google Scholar 

  201. Duda, T.F., Jr. & Palumbi, S.R. Molecular genetics of ecological diversification: duplication and rapid evolution of toxin genes of the venomous gastropod Conus. Proc. Natl. Acad. Sci. USA 96, 6820–6823 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Schmidt, T.R., Goodman, M. & Grossman, L.I. Molecular evolution of the COX7A gene family in primates. Mol. Biol. Evol. 16, 619–626 (1999).

    Article  CAS  PubMed  Google Scholar 

  203. Huttley, G.A. et al. Adaptive evolution of the tumour suppressor BRCA1 in humans and chimpanzees. Australian Breast Cancer Family Study. Nat. Genet. 25, 410–413 (2000).

    Article  CAS  PubMed  Google Scholar 

  204. Schmidt, P.S., Duvernell, D.D. & Eanes, W.F. Adaptive evolution of a candidate gene for aging in Drosophila. Proc. Natl. Acad. Sci. USA 97, 10861–10865 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Ding, Y.C. et al. Evidence of positive selection acting at the human dopamine receptor D4 gene locus. Proc. Natl. Acad. Sci. USA 99, 309–314 (2002).

    Article  CAS  PubMed  Google Scholar 

  206. Huang, W., Chang, B.H., Gu, X., Hewett-Emmett, D. & Li, W.H. Sex differences in mutation rate in higher primates estimated from AMG intron sequences. J. Mol. Evol. 44, 463–465 (1997).

    Article  CAS  PubMed  Google Scholar 

  207. Shimmin, L.C., Chang, B.H. & Li, W.H. Male-driven evolution of DNA sequences. Nature 362, 745–747 (1993).

    Article  CAS  PubMed  Google Scholar 

  208. Chang, B.H.-J., Hewett-Emmett, D. & Li, W.-H. Male-to-female ratios of mutation rate in higher primates estimated from intron sequences. Zool. Studies 35, 36–48 (1996).

    CAS  Google Scholar 

  209. Pecon Slattery, J. & O'Brien, S.J. Patterns of Y and X chromosome DNA sequence divergence during the Felidae radiation. Genetics 148, 1245–1255 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Chang, B.H.-J., Shimmin, L.C., Shyue, S.K., Hewett-Emmett, D. & Li, W.H. Weak male-driven molecular evolution in rodents. Proc. Natl. Acad. Sci. USA 91, 827–831 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Chang, B.H.-J. & Li, W.H. Estimating the intensity of male-driven evolution in rodents by using X-linked and Y-linked Ube1 genes and pseudogenes. J. Mol. Evol. 40, 70–77 (1995).

    Article  CAS  PubMed  Google Scholar 

  212. Kahn, N.W. & Quinn, T.W. Male-driven evolution among Eoaves? A test of the replicative division hypothesis in a heterogametic female (ZW) system. J. Mol. Evol. 49, 750–759 (1999).

    Article  CAS  PubMed  Google Scholar 

  213. Carmichael, A.N., Fridolfsson, A.K., Halverson, J. & Ellegren, H. Male-biased mutation rates revealed from Z and W chromosome-linked ATP synthase α-subunit (ATP5A1) sequences in birds. J. Mol. Evol. 50, 443–447 (2000).

    Article  CAS  PubMed  Google Scholar 

  214. Parkhill, J. et al. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403, 665–668 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Yi and K. Makova for help, and L. Hurst for comments. This work was supported by grants from the National Institutes of Health (to W.-H.L.) and from Science Foundation Ireland (to K.H.W.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth H. Wolfe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolfe, K., Li, WH. Molecular evolution meets the genomics revolution. Nat Genet 33 (Suppl 3), 255–265 (2003). https://doi.org/10.1038/ng1088

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1088

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing