Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of insulin action and pancreatic β-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1

This article has been updated

Abstract

Type 2 diabetes results from impaired action and secretion of insulin. It is not known whether the two defects share a common pathogenesis. We show that haploinsufficiency of the Foxo1 gene, encoding a forkhead transcription factor (forkhead box transcription factor O1), restores insulin sensitivity and rescues the diabetic phenotype in insulin-resistant mice by reducing hepatic expression of glucogenetic genes and increasing adipocyte expression of insulin-sensitizing genes. Conversely, a gain-of-function Foxo1 mutation targeted to liver and pancreatic β-cells results in diabetes arising from a combination of increased hepatic glucose production and impaired β-cell compensation due to decreased Pdx1 expression. These data indicate that Foxo1 is a negative regulator of insulin sensitivity in liver, adipocytes and pancreatic β-cells. Impaired insulin signaling to Foxo1 provides a unifying mechanism for the common metabolic abnormalities of type 2 diabetes.

NOTE: In the AOP version of this article, the name of the fourth author was misspelled as W K Cavanee rather than the correct spelling: W K Cavenee. This has been corrected in the full-text online version of the article. The name will appear correctly in the print version.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation and metabolic analysis of Insr+/− Foxo1+/−mice.
Figure 2: Analysis of pancreatic β-cell function and gene expression in Insr+/− Foxo1+/− mice.
Figure 3: Generation of transgenic mice expressing a constitutively active Foxo1 driven by the Ttr promoter.
Figure 4: Pancreatic immunohistochemistry in Foxo1 transgenics.
Figure 5: Metabolic characterization of Foxo1 transgenics.
Figure 6: Pancreatic and hepatic function in Foxo1 transgenic mice.

Similar content being viewed by others

Change history

  • 09 September 2002

    This was incorrect in AOP version but corrected in print. Changed the spelling of fourth author's last name from incorrect Cavanee to correct Cavenee

References

  1. National Diabetes Data Group. Diabetes in America (National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, 1995).

  2. Saltiel, A.R. New perspectives into the molecular pathogenesis and treatment of type 2 diabetes. Cell 104, 517–529 (2001).

    Article  CAS  Google Scholar 

  3. Taylor, S.I., Accili, D. & Imai, Y. Insulin resistance or insulin deficiency. Which is the primary cause of NIDDM? Diabetes 43, 735–740 (1994).

    Article  CAS  Google Scholar 

  4. Bergman, R.N. & Ader, M. Free fatty acids and pathogenesis of type 2 diabetes mellitus. Trends Endocrinol. Metab. 11, 351–356 (2000).

    Article  CAS  Google Scholar 

  5. Hotamisligil, G.S. Molecular mechanisms of insulin resistance and the role of the adipocyte. Int. J. Obes. Relat. Metab. Disord. 24 (Suppl. 4), S23–S27 (2000).

    Article  CAS  Google Scholar 

  6. Michael, M.D. et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol. Cell 6, 87–97 (2000).

    Article  CAS  Google Scholar 

  7. Rother, K.I. et al. Evidence that IRS-2 phosphorylation is required for insulin action in hepatocytes. J. Biol. Chem. 273, 17491–17497 (1998).

    Article  CAS  Google Scholar 

  8. Withers, D.J. et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391, 900–904 (1998).

    Article  CAS  Google Scholar 

  9. Kulkarni, R.N. et al. Tissue-specific knockout of the insulin receptor in pancreatic β cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96, 329–339 (1999).

    Article  CAS  Google Scholar 

  10. Kulkarni, R.N. et al. Altered function of insulin receptor substrate-1-deficient mouse islets and cultured β-cell lines. J. Clin. Invest. 104, R69–75 (1999).

    Article  CAS  Google Scholar 

  11. Kubota, N. et al. Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory β-cell hyperplasia. Diabetes 49, 1880–1889 (2000).

    Article  CAS  Google Scholar 

  12. Nakae, J., Kido, Y. & Accili, D. Tissue-specific insulin resistance in type 2 diabetes: lessons from gene-targeted mice. Ann. Med. 33, 22–27 (2001).

    Article  CAS  Google Scholar 

  13. Kaestner, K.H., Knochel, W. & Martinez, D.E. Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev. 14, 142–146 (2000).

    CAS  PubMed  Google Scholar 

  14. Lin, K., Dorman, J.B., Rodan, A. & Kenyon, C. Daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278, 1319–1322 (1997).

    Article  CAS  Google Scholar 

  15. Ogg, S. et al. The Forkhead transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389, 994–999 (1997).

    Article  CAS  Google Scholar 

  16. Apfeld, J. & Kenyon, C. Cell nonautonomy of C. elegans daf-2 function in the regulation of diapause and life span. Cell 95, 199–210 (1998).

    Article  CAS  Google Scholar 

  17. Lin, K., Hsin, H., Libina, N. & Kenyon, C. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nature Genet. 28, 139–145 (2001).

    Article  CAS  Google Scholar 

  18. Accili, D. et al. Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nature Genet. 12, 106–109 (1996).

    Article  CAS  Google Scholar 

  19. Nakae, J., Park, B.-C. & Accili, D. Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a wortmannin-sensitive pathway. J. Biol. Chem. 274, 15982–15985 (1999).

    Article  CAS  Google Scholar 

  20. Anderson, M.J., Viars, C.S., Czekay, S., Cavenee, W.K. & Arden, K.C. Cloning and characterization of three human forkhead genes that comprise an FKHR-like gene subfamily. Genomics 47, 187–199 (1998).

    Article  CAS  Google Scholar 

  21. Nasrin, N. et al. DAF-16 recruits the CREB-binding protein coactivator complex to the insulin-like growth factor binding protein 1 promoter in HepG2 cells. Proc. Natl Acad. Sci. USA 97, 10412–10417 (2000).

    Article  CAS  Google Scholar 

  22. Bruning, J.C. et al. Development of a novel polygenic model of NIDDM in mice heterozygous for IR and IRS-1 null alleles. Cell 88, 561–572 (1997).

    Article  CAS  Google Scholar 

  23. Kido, Y., Philippe, N., Schaeffer, A.A. & Accili, D. Genetic modifiers of the insulin resistance phenotype. Diabetes 49, 589–596 (2000).

    Article  CAS  Google Scholar 

  24. Kido, Y. et al. Tissue-specific insulin resistance in mice with combined mutations of Insulin Receptor, IRS-1 and IRS-2. J. Clin. Invest. 105, 199–205 (2000).

    Article  CAS  Google Scholar 

  25. Shen, W., Scearce, L.M., Brestelli, J.E., Sund, N.J. & Kaestner, K.H. Foxa3 (Hepatocyte Nuclear Factor 3γ) is required for the regulation of hepatic glut2 expression and the maintenance of glucose homeostasis during a prolonged fast. J. Biol. Chem. 276, 42812–42817 (2001).

    Article  CAS  Google Scholar 

  26. Nakae, J., Kitamura, T., Biggs, W., Arden, K. & Accili, D. The forkhead transcription factor FKHR inhibits adipocyte differentiation. Diabetes 50 (Suppl. 2), A22 (2001).

    Google Scholar 

  27. Datta, S.R., Brunet, A. & Greenberg, M.E. Cellular survival: a play in three Akts. Genes Dev. 13, 2905–2927 (1999).

    Article  CAS  Google Scholar 

  28. Nakae, J., Barr, V. & Accili, D. Differential regulation of gene expression by insulin and IGF-1 receptors correlates with phosphorylation of a single amino acid residue in the forkhead transcription factor FKHR. EMBO J. 19, 989–996 (2000).

    Article  CAS  Google Scholar 

  29. Yan, C., Costa, R.H., Darnell, J.E., Jr., Chen, J.D. & Van Dyke, T.A. Distinct positive and negative elements control the limited hepatocyte and choroid plexus expression of transthyretin in transgenic mice. EMBO J. 9, 869–878 (1990).

    Article  CAS  Google Scholar 

  30. Allen-Jennings, A.E., Hartman, M.G., Kociba, G.J. & Hai, T. The roles of atf3 in glucose homeostasis. A transgenic mouse model with liver dysfunction and defects in endocrine pancreas. J. Biol. Chem. 276, 29507–29514 (2001).

    Article  CAS  Google Scholar 

  31. Jacobsson, B. et al. Transthyretin immunoreactivity in human and porcine liver, choroid plexus, and pancreatic islets. J. Histochem. Cytochem. 37, 31–37 (1989).

    Article  CAS  Google Scholar 

  32. Cherrington, A.D. Banting Lecture 1997. Control of glucose uptake and release by the liver in vivo. Diabetes 48, 1198–1214 (1999).

    Article  CAS  Google Scholar 

  33. Bonner-Weir, S. et al. In vitro cultivation of human islets from expanded ductal tissue. Proc. Natl Acad. Sci. USA 97, 7999–8004 (2000).

    Article  CAS  Google Scholar 

  34. Bouwens, L. & Pipeleers, D.G. Extra-insular β cells associated with ductules are frequent in adult human pancreas. Diabetologia 41, 629–633 (1998).

    Article  CAS  Google Scholar 

  35. Sharma, A. et al. The homeodomain protein IDX-1 increases after an early burst of proliferation during pancreatic regeneration. Diabetes 48, 507–513 (1999).

    Article  CAS  Google Scholar 

  36. Nakae, J., Kitamura, T., Silver, D.L. & Accili, D. The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J. Clin. Invest. 108, 1359–1367 (2001).

    Article  CAS  Google Scholar 

  37. Kitamura, T. et al. The transcription factor FKHR regulates pancreatic β cell survival. Diabetes 50 (Suppl. 2), A345 (2001).

    Google Scholar 

  38. Kadowaki, T. Insights into insulin resistance and type 2 diabetes from knockout mouse models. J. Clin. Invest. 106, 459–465 (2000).

    Article  CAS  Google Scholar 

  39. Bonner-Weir, S. Life and death of the pancreatic β cells. Trends Endocrinol. Metab. 11, 375–378 (2000).

    Article  CAS  Google Scholar 

  40. Kitamura, T. et al. Preserved pancreatic β-cell development and function in mice lacking the insulin receptor-related receptor. Mol. Cell. Biol. 21, 5624–5630 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US National Institutes of Health and the Juvenile Diabetes Research Foundation. We thank B. Thorens (Univ. of Lausanne) for the mouse Slc2a2 cDNA and Y. Liu for help with immunohistochemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Accili.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakae, J., Biggs, W., Kitamura, T. et al. Regulation of insulin action and pancreatic β-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1. Nat Genet 32, 245–253 (2002). https://doi.org/10.1038/ng890

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng890

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing