Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chromosomal silencing and localization are mediated by different domains of Xist RNA

Abstract

The gene Xist initiates the chromosomal silencing process of X inactivation in mammals. Its product, a noncoding RNA, is expressed from and specifically associates with the inactive X chromosome in female cells. Here we use an inducible Xist expression system in mouse embryonic stem cells that recapitulates long-range chromosomal silencing to elucidate which Xist RNA sequences are necessary for chromosomal association and silencing. We show that chromosomal association and spreading of Xist RNA can be functionally separated from silencing by specific mutations. Silencing requires a conserved repeat sequence located at the 5′ end of Xist. Deletion of this element results in Xist RNA that still associates with chromatin and spreads over the chromosome but does not effect transcriptional repression. Association of Xist RNA with chromatin is mediated by functionally redundant sequences that act cooperatively and are dispersed throughout the remainder of Xist but show little or no homology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Homing of single-copy Xist cDNA transgenes to the Hprt locus.
Figure 2: Summary of Xist mutations.
Figure 3: Analysis of expression and localization of mutated Xist RNAs.
Figure 4: Targeting the endogenous Xist locus in male mouse J1 ES cells.
Figure 5: Transgenic Xist expression leads to MCB formation.
Figure 6: Analysis of the 5′ repeat element of Xist.

Similar content being viewed by others

References

  1. Barr, M.L. & Bertram, E.G. A morphological distinction between neurones of the male and female, and the behaviour of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature 163, 676–677 (1949).

    Article  CAS  PubMed  Google Scholar 

  2. Avner, P. & Heard, E. X-chromosome inactivation: counting, choice and initiation. Nature Rev. Genet. 2, 59–67 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Lyon, M.F. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190, 372–373 (1961).

    Article  CAS  PubMed  Google Scholar 

  4. Russell, L.B. Genetics of mammalian sex chromosomes. Science, 1795–1803 (1961).

  5. Brown, C.J. & Willard, H.F. Localization of the X inactivation center (XIC) to Xq13. Cytogenet. Cell. Genet. 51, 971 (1989).

    Google Scholar 

  6. Brown, C.J. et al. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349, 38–44 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Brockdorff, N. et al. Conservation of position and exclusive expression of mouse Xist from the inactive X chromosome. Nature 351, 329–331 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Brown, C.J. et al. The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71, 527–542 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Marahrens, Y., Panning, B., Dausman, J., Strauss, W. & Jaenisch, R. Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes. Dev. 11, 156–166 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Penny, G.D., Kay, G.F., Sheardown, S.A., Rastan, S. & Brockdorff, N. Requirement for Xist in X chromosome inactivation. Nature 379, 131–137 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Lee, J.T., Strauss, W.M., Dausman, J.A. & Jaenisch, R. A 450 kb transgene displays properties of the mammalian X-inactivation center. Cell 86, 83–94 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Herzing, L.B., Romer, J.T., Horn, J.M. & Ashworth, A. Xist has properties of the X-chromosome inactivation centre. Nature 386, 272–275 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Wutz, A. & Jaenisch, R. A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol. Cell. 5, 695–705 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Marahrens, Y., Loring, J. & Jaenisch, R. Role of the Xist gene in X chromosome choosing. Cell 92, 657–664 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Rasmussen, T.P., Wutz, A., Pehrson, J.R. & Jaenisch, R. Xist expression is sufficient for macroH2A localization. Chromosoma 110, 411–420 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Brockdorff, N. et al. The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71, 515–526 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Tinker, A.V. & Brown, C.J. Induction of XIST expression from the human active X chromosome in mouse/human somatic cell hybrids by DNA demethylation. Nucleic Acids Res. 26, 2935–2940 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bronson, S.K. et al. Single-copy transgenic mice with chosen-site integration. Proc. Natl Acad. Sci. USA 93, 9067–9072 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fukushige, S. & Sauer, B. Genomic targeting with a positive-selection lox integration vector allows highly reproducible gene expression in mammalian cells. Proc. Natl Acad. Sci. USA 89, 7905–7909 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Baron, U., Freundlieb, S., Gossen, M. & Bujard, H. Co-regulation of two gene activities by tetracycline via a bidirectional promoter. Nucleic Acids Res. 23, 3605–3606 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gossen, M. et al. Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Zambrowicz, B.P. et al. Disruption of overlapping transcripts in the ROSA β geo 26 gene trap strain leads to widespread expression of β-galactosidase in mouse embryos and hematopoietic cells. Proc. Natl Acad. Sci. USA 94, 3789–3794 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee, J.T., Davidow, L.S. & Warshawsky, D. Tsix, a gene antisense to Xist at the inactivation centre. Nature Genet. 21, 400–404 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Costanzi, C. & Pehrson, J.R. Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature 393, 599–601 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Rasmussen, T.P., Mastrangelo, M.A., Eden, A., Pehrson, J.R. & Jaenisch, R. Dynamic relocalization of histone MacroH2A1 from centrosomes to inactive X chromosomes during X inactivation. J. Cell. Biol. 150, 1189–1198 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Csankovszki, G., Panning, B., Bates, B., Pehrson, J.R. & Jaenisch, R. Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation. Nature Genet. 22, 323–324 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Nesterova, T.B. et al. Characterization of the genomic xist locus in rodents reveals conservation of overall gene structure and tandem repeats but rapid evolution of unique sequence. Genome Res. 11, 833–849 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Karn, J. et al. Control of immunodeficiency virus gene expression by the RNA-binding proteins tat and rev. in RNA-Protein Interactions (eds Nagai, K. & Mattaj, I.W.) 192–220 (Oxford University Press, New York, 1994).

    Google Scholar 

  29. Beletskii, A., Hong, Y.-K., Pehrson, J., Egholm, M. & Strauss, W.M. PNA interface mapping demonstrates functional domains in the noncoding RNA Xist. Proc. Natl Acad. Sci. USA 98, 9215–9220 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Allaman-Pillet, N., Djemai, A., Bonny, C. & Schorderet, D.F. The 5′ repeat elements of the mouse Xist gene inhibit the transcription of X-linked genes. Gene. Expr. 9, 93–101 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Kelley, R.L. & Kuroda, M.I. Noncoding RNA genes in dosage compensation and imprinting. Cell 103, 9–12 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nature Genet. 21, 70–71 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Baron, U., Gossen, M. & Bujard, H. Tetracycline-controlled transcription in eukaryotes: novel transactivators with graded transactivation potential. Nucleic Acids Res. 25, 2723–2729 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wutz, A. et al. Non-imprinted Igf2r expression decreases growth and rescues the Tme mutation in mice. Development 128, 1881–1887 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for the ability to use the microscopes of the W.M. Keck Biological Imaging Facility. This work was supported by grants from the National Institutes of Health and the Max Kade Foundation, and by the Human Frontiers Science Program Organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Jaenisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wutz, A., Rasmussen, T. & Jaenisch, R. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat Genet 30, 167–174 (2002). https://doi.org/10.1038/ng820

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng820

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing