Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia

Abstract

Acute lymphoblastic leukemias carrying a chromosomal translocation involving the mixed-lineage leukemia gene (MLL, ALL1, HRX) have a particularly poor prognosis. Here we show that they have a characteristic, highly distinct gene expression profile that is consistent with an early hematopoietic progenitor expressing select multilineage markers and individual HOX genes. Clustering algorithms reveal that lymphoblastic leukemias with MLL translocations can clearly be separated from conventional acute lymphoblastic and acute myelogenous leukemias. We propose that they constitute a distinct disease, denoted here as MLL, and show that the differences in gene expression are robust enough to classify leukemias correctly as MLL, acute lymphoblastic leukemia or acute myelogenous leukemia. Establishing that MLL is a unique entity is critical, as it mandates the examination of selectively expressed genes for urgently needed molecular targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genes that distinguish ALL from MLL.
Figure 2: Selected early lymphocyte gene expression in ALL and MLL.
Figure 3: Selected HOX gene expression in ALL and MLL.
Figure 4: Comparison of gene expression between ALL, MLL and AML.
Figure 5: Genes that are specifically expressed in MLL, ALL or AML.
Figure 6: Classification of ALL, MLL and AML on the basis of their gene expression profile.

Similar content being viewed by others

References

  1. Rowley, J.D. The critical role of chromosome translocations in human leukemias. Annu. Rev. Genet. 32, 495–519 (1998).

    Article  CAS  Google Scholar 

  2. Gu, Y. et al. The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell 71, 701–708 (1992).

    Article  CAS  Google Scholar 

  3. Tkachuk, D.C., Kohler, S. & Cleary, M.L. Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell 71, 691–700 (1992).

    Article  CAS  Google Scholar 

  4. Domer, P.H. et al. Acute mixed-lineage leukemia t(4;11)(q21;q23) generates an MLL–AF4 fusion product. Proc. Natl Acad. Sci. USA 90, 7884–7888 (1993).

    Article  CAS  Google Scholar 

  5. Pui, C.H. et al. Clinical characteristics and treatment outcome of childhood acute lymphoblastic leukemia with the t(4;11)(q21;q23): a collaborative study of 40 cases. Blood 77, 440–447 (1991).

    CAS  Google Scholar 

  6. Behm, F.G., Smith, F.O., Raimondi, S.C., Pui, C.H. & Bernstein, I.D. Human homologue of the rat chondroitin sulfate proteoglycan, NG2, detected by monoclonal antibody 7.1, identifies childhood acute lymphoblastic leukemias with t(4;11)(q21;q23) or t(11;19)(q23;p13) and MLL gene rearrangements. Blood 87, 1134–1139 (1996).

    CAS  Google Scholar 

  7. Dimartino, J.F. & Cleary, M.L. Mll rearrangements in haematological malignancies: lessons from clinical and biological studies. Br. J. Haematol. 106, 614–626 (1999).

    Article  CAS  Google Scholar 

  8. Yu, B.D., Hess, J.L., Horning, S.E., Brown, G.A. & Korsmeyer, S.J. Altered Hox expression and segmental identity in Mll-mutant mice. Nature 378, 505–508 (1995).

    Article  CAS  Google Scholar 

  9. Hess, J.L., Yu, B.D., Li, B., Hanson, R. & Korsmeyer, S.J. Defects in yolk sac hematopoiesis in Mll-null embryos. Blood 90, 1799–1806 (1997).

    CAS  Google Scholar 

  10. Buske, C. & Humphries, R.K. Homeobox genes in leukemogenesis. Int. J. Hematol. 71, 301–308 (2000).

    CAS  Google Scholar 

  11. Nakamura, T. et al. Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukaemia. Nature Genet. 12, 154–158 (1996).

    Article  CAS  Google Scholar 

  12. Borrow, J. et al. The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP98 and class I homeoprotein HOXA9. Nature Genet. 12, 159–167 (1996).

    Article  CAS  Google Scholar 

  13. Golub, T.R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999).

    Article  CAS  Google Scholar 

  14. Hardy, R.R. & Hayakawa, K. B cell development pathways. Annu. Rev. Immunol. 19, 595–621 (2001).

    Article  CAS  Google Scholar 

  15. LeBien, T.W. Fates of human B-cell precursors. Blood 96, 9–23 (2000).

    CAS  Google Scholar 

  16. Murre, C. Role of helix–loop–helix proteins in lymphocyte development. Cold Spring Harb. Symp. Quant. Biol. 64, 39–44 (1999).

    Article  CAS  Google Scholar 

  17. Fruman, D.A. et al. Impaired B cell development and proliferation in absence of phosphoinositide-3-kinase p85α. Science 283, 393–397 (1999).

    Article  CAS  Google Scholar 

  18. Schubart, K. et al. B cell development and immunoglobulin gene transcription in the absence of Oct-2 and OBF-1. Nature Immunol. 2, 69–74 (2001).

    Article  CAS  Google Scholar 

  19. Frank, K.M. et al. Late embryonic lethality and impaired V(D)J recombination in mice lacking DNA ligase IV. Nature 396, 173–177 (1998).

    Article  CAS  Google Scholar 

  20. Yin, A.H. et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90, 5002–5012 (1997).

    CAS  Google Scholar 

  21. Rosnet, O. et al. Human FLT3/FLK2 gene: cDNA cloning and expression in hematopoietic cells. Blood 82, 1110–1119 (1993).

    CAS  Google Scholar 

  22. Dong, W.F., Billia, F., Atkins, H.L., Iscove, N.N. & Minden, M.D. Expression of rhombotin 2 in normal and leukaemic haemopoietic cells. Br. J. Haematol. 93, 280–286 (1996).

    Article  CAS  Google Scholar 

  23. Yang, R. et al. Cyclin A1 expression in leukemia and normal hematopoietic cells. Blood 93, 2067–2074 (1999).

    CAS  Google Scholar 

  24. Remold-O'Donnell, E., Chin, J. & Alberts, M. Sequence and molecular characterization of human monocyte/neutrophil elastase inhibitor. Proc. Natl Acad. Sci. USA 89, 5635–5639 (1992).

    Article  CAS  Google Scholar 

  25. Rosenberg, H.F., Ackerman, S.J. & Tenen, D.G. Human eosinophil cationic protein. Molecular cloning of a cytotoxin and helminthotoxin with ribonuclease activity. J. Exp. Med. 170, 163–176 (1989).

    Article  CAS  Google Scholar 

  26. Ho, E.L. et al. Murine Nkg2d and Cd94 are clustered within the natural killer complex and are expressed independently in natural killer cells. Proc. Natl Acad. Sci. USA 95, 6320–6325 (1998).

    Article  CAS  Google Scholar 

  27. Kondo, M., Weissman, I.L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).

    Article  CAS  Google Scholar 

  28. Nakamura, T., Largaespada, D.A., Shaughnessy, J.D. Jr, Jenkins, N.A. & Copeland, N.G. Cooperative activation of Hoxa and Pbx1-related genes in murine myeloid leukaemias. Nature Genet. 12, 149–153 (1996).

    Article  CAS  Google Scholar 

  29. Rozovskaia, T. et al. Upregulation of Meis1 and HoxA9 in acute lymphocytic leukemias with the t(4:11) abnormality. Oncogene 20, 874–878 (2001).

    Article  CAS  Google Scholar 

  30. Venables, W.N. & Ripley, B.D. Modern Applied Statistics with S-Plus (Springer, New York, 1994).

    Book  Google Scholar 

  31. Dasarathy, V.B. (ed.) Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques (IEEE Computer Society Press, Los Alamitos, 1991).

    Google Scholar 

  32. Hu, M. et al. Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev. 11, 774–785 (1997).

    Article  CAS  Google Scholar 

  33. Montecino-Rodriguez, E., Leathers, H. & Dorshkind, K. Bipotential B-macrophage progenitors are present in adult bone marrow. Nature Immunol. 2, 83–88 (2001).

    Article  CAS  Google Scholar 

  34. Cumano, A., Paige, C.J., Iscove, N.N. & Brady, G. Bipotential precursors of B cells and macrophages in murine fetal liver. Nature 356, 612–615 (1992).

    Article  CAS  Google Scholar 

  35. Nutt, S.L., Heavey, B., Rolink, A.G. & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401, 556–562 (1999).

    Article  CAS  Google Scholar 

  36. Borrello, M.A. & Phipps, R.P. The B/macrophage cell: an elusive link between CD5+ B lymphocytes and macrophages. Immunol. Today 17, 471–475 (1996).

    Article  CAS  Google Scholar 

  37. Hanson, R.D. et al. Mammalian Trithorax and polycomb-group homologues are antagonistic regulators of homeotic development. Proc. Natl Acad. Sci. USA 96, 14372–14377 (1999).

    Article  CAS  Google Scholar 

  38. Ludwig, W.D. et al. Immunophenotypic and genotypic features, clinical characteristics, and treatment outcome of adult pro-B acute lymphoblastic leukemia: results of the German multicenter trials GMALL 03/87 and 04/89. Blood 92, 1898–1909 (1998).

    CAS  Google Scholar 

  39. Silverman, L.B. et al. Intensified therapy for infants with acute lymphoblastic leukemia: results from the Dana-Farber Cancer Institute Consortium. Cancer 80, 2285–2295 (1997).

    Article  CAS  Google Scholar 

  40. Pieters, R. et al. Relation between age, immunophenotype and in vitro drug resistance in 395 children with acute lymphoblastic leukemia—implications for treatment of infants. Leukemia 12, 1344–1348 (1998).

    Article  CAS  Google Scholar 

  41. Tallman, M.S. et al. All-trans-retinoic acid in acute promyelocytic leukemia. N. Engl. J. Med. 337, 1021–1028 (1997).

    Article  CAS  Google Scholar 

  42. Druker, B.J. et al. Efficacy and safety of a specific inhibitor of the BCR–ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344, 1031–1037 (2001).

    Article  CAS  Google Scholar 

  43. Nakao, M. et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 10, 1911–1918 (1996).

    CAS  Google Scholar 

  44. Zhao, M. et al. In vivo treatment of mutant FLT3-transformed murine leukemia with a tyrosine kinase inhibitor. Leukemia 14, 374–378 (2000).

    Article  CAS  Google Scholar 

  45. Tse, K.F., Mukherjee, G. & Small, D. Constitutive activation of FLT3 stimulates multiple intracellular signal transducers and results in transformation. Leukemia 14, 1766–1776 (2000).

    Article  CAS  Google Scholar 

  46. Loh, M.L. et al. Incidence of TEL/AML1 fusion in children with relapsed acute lymphoblastic leukemia. Blood 92, 4792–4797 (1998).

    CAS  Google Scholar 

  47. Cuthbert, G., Thompson, K., Breese, G., McCullough, S. & Bown, N. Sensitivity of FISH in detection of MLL translocations. Genes Chromosom. Cancer 29, 180–185 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Dalton, S. Waters, A. Cardoso and N. Haining for help with accumulating samples and obtaining clinical data; J. Korsmeyer and D. Neuberg for help with statistical analysis; J. Fletcher for help with interpretation of cytogenetic data; E. Smith for assistance with figures and editing; C. Ladd, M. Angelo and other members of the Whitehead/MIT Center for Genome Research Program in Cancer Genomics for technical help and developing data analysis tools and P. Ernst and J. Hsieh for discussions. This work was supported in part by an NIH grant, an American Society of Hematology Fellow Scholar Award (S.A.A.), an American Society of Hematology Junior Faculty Scholar Award (T.R.G.), the Belfer Cancer Genomics Center and Bristol-Myers Squibb, Millennium Pharmaceuticals, and Affymetrix (T.R.G.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Todd R. Golub or Stanley J. Korsmeyer.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armstrong, S., Staunton, J., Silverman, L. et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 30, 41–47 (2002). https://doi.org/10.1038/ng765

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng765

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing