Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetic interactions between tumor suppressors Brca1 and p53 in apoptosis, cell cycle and tumorigenesis

Abstract

Breast cancer is a chief cause of cancer-related mortality that affects women worldwide. About 8% of cases are hereditary, and approximately half of these are associated with germline mutations of the breast tumor suppressor gene BRCA1 (refs. 1,2). We have previously reported a mouse model in which Brca1 exon 11 is eliminated in mammary epithelial cells through Cre-mediated excision3. This mutation is often accompanied by alterations in transformation-related protein 53 (Trp53, encoding p53), which substantially accelerates mammary tumor formation. Here, we sought to elucidate the underlying mechanism(s) using mice deficient in the Brca1 exon 11 isoform (Brca1Δ11/Δ11). Brca1Δ11/Δ11 embryos died late in gestation because of widespread apoptosis. Unexpectedly, elimination of one Trp53 allele completely rescues this embryonic lethality and restores normal mammary gland development. However, most female Brca1Δ11/Δ11 Trp53+/− mice develop mammary tumors with loss of the remaining Trp53 allele within 6–12 months. Lymphoma and ovarian tumors also occurr at lower frequencies. Heterozygous mutation of Trp53 decreases p53 and results in attenuated apoptosis and G1–S checkpoint control, allowing Brca1Δ11/Δ11 cells to proliferate. The p53 protein regulates Brca1 transcription both in vitro and in vivo, and Brca1 participates in p53 accumulation after γ-irradiation through regulation of its phosphorylation and Mdm2 expression. These findings provide a mechanism for BRCA1-associated breast carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Deletion of exon 11 of Brca1 from mouse germ line.
Figure 2: Morphological and histological analyses of Brca1Δ11/Δ11 embryos.
Figure 3: Cell death in Brca1Δ11/Δ11 embryos.
Figure 4: Effects of Brca1-Δ11 mutation on gene expression, tumorigenesis, cell survival and proliferation, and G1–S cell cycle checkpoint.
Figure 5: p53, Brca1, Mdm2 and Ser18-phosphorylated p53 expression.

References

  1. Hill, A.D., Doyle, J.M., McDermott, E.W. & O' Higgins, N.J. Hereditary breast cancer. Br. J. Surg. 84, 1334–1339 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Casey, G. The BRCA1 and BRCA2 breast cancer genes. Curr. Opin. Oncol. 9, 88–93 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Xu, X. et al. Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nature Genet. 22, 37–43 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Lakso, M. et al. Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc. Natl. Acad. Sci. USA 93, 5860–5865 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vaziri, H. et al. ATM-dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the post-translational activation of p53 protein involving poly(ADP-ribose) polymerase. Embo. J. 16, 6018–6033. (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brugarolas, J. et al. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377, 552–557 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Deng, C., Zhang, P., Harper, J.W., Elledge, S.J. & Leder, P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82, 675–684 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Bennett, M. et al. Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science 282, 290–293. (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Hakem, R., de la Pompa, J.L., Elia, A., Potter, J. & Mak, T.W. Partial rescue of Brca1 (5–6) early embryonic lethality by p53 or p21 null mutation. Nature Genet. 16, 298–302 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Shen, S.X. et al. A targeted disruption of the murine Brca1 gene causes γ-radiation hypersensitivity and genetic instability. Oncogene 17, 3115–3124 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Sah, V.P. et al. A subset of p53-deficient embryos exhibit exencephaly. Nature Genet. 10, 175–180 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Knudson, C.M., Tung, K.S., Tourtellotte, W.G., Brown, G.A. & Korsmeyer, S.J. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270, 96–99 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. May, P. & May, E. Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene 18, 7621–7636 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Andres, J.L. et al. Regulation of BRCA1 and BRCA2 expression in human breast cancer cells by DNA-damaging agents. Oncogene 16, 2229–2241 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. MacLachlan, T.K., Dash, B., Dicker, D.T. & El-Deiry, W. Repression of BRCA1 through a feedback loop involving p53. J. Biol. Chem. 275, 31869–31875 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, Y. & Eckhart, W. Phosphorylation sites in the amino-terminal region of mouse p53. Proc. Natl. Acad. Sci. USA 89, 4231–4235 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Khosravi, R. et al. Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc. Natl. Acad. Sci. USA 96, 14973–14977. (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nakagawa, K., Taya, Y., Tamai, K. & Yamaizumi, M. Requirement of ATM in phosphorylation of the human p53 protein at serine 15 following DNA double-strand breaks. Mol. Cell Biol. 19, 2828–2834 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cortez, D., Wang, Y., Qin, J. & Elledge, S.J. Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286, 1162–1166 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Shieh, S.Y., Ikeda, M., Taya, Y. & Prives, C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91, 325–334 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Shieh, S.Y., Ahn, J., Tamai, K., Taya, Y. & Prives, C. The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev. 14, 289–300 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tibbetts, R.S. et al. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev. 13, 152–157 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hakem, R. et al. The tumor suppressor gene Brca1 is required for embryonic cellular proliferation in the mouse. Cell 85, 1009–1023 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Liu, C.Y., Flesken-Nikitin, A., Li, S., Zeng, Y. & Lee, W.H. Inactivation of the mouse Brca1 gene leads to failure in the morphogenesis of the egg cylinder in early postimplantation development. Genes Dev. 10, 1835–1843 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Cressman, V.L. et al. Growth retardation, DNA repair defects, and lack of spermatogenesis in BRCA1-deficient mice. Mol. Cell Biol. 19, 7061–7075 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Deng, C.X. & Brodie, S. Roles of BRCA1 and its interacting proteins. BioEssays 22, 728–737 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Schuyer, M. & Berns, E.M. Is TP53 dysfunction required for BRCA1-associated carcinogenesis? Mol. Cell Endocrinol. 155, 143–152 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Donehower, L.A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Linke, S.P., Clarkin, K.C. & Wahl, G.M. p53 mediates permanent arrest over multiple cell cycles in response to gamma-irradiation. Cancer Res. 57, 1171–1179 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S.J. Korsmeyer for Bax−/− mice, L. Donehower for Trp53−/− mice, H. Westphal for EIIa-Cre transgenic mice and G. Lozano for antibody against Mdm2. We thank C. Li and B. Jeffries for technical assistance, and members of the Deng laboratory for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chu-Xia Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, X., Qiao, W., Linke, S. et al. Genetic interactions between tumor suppressors Brca1 and p53 in apoptosis, cell cycle and tumorigenesis. Nat Genet 28, 266–271 (2001). https://doi.org/10.1038/90108

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/90108

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing