Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutational and functional analyses reveal that ST7 is a highly conserved tumor-suppressor gene on human chromosome 7q31

Abstract

Loss of heterozygosity (LOH) of markers on human chromosome 7q31 is frequently encountered in a variety of human neoplasias, indicating the presence of a tumor-suppressor gene (TSG). By a combination of microcell-fusion and deletion-mapping studies, we previously established that this TSG resides within a critical region flanked by the genetic markers D7S522 and D7S677. Using a positional cloning strategy and aided by the availability of near-complete sequence of this genomic interval, we have identified a TSG within 7q31, named ST7 (for suppression of tumorigenicity 7; this same gene was recently reported in another context and called RAY1). ST7 is ubiquitously expressed in human tissues. Analysis of a series of cell lines derived from breast tumors and primary colon carcinomas revealed the presence of mutations in ST7. Introduction of the ST7 cDNA into the prostate-cancer–derived cell line PC3 had no effect on the in vitro proliferation of the cells, but abrogated their in vivo tumorigenicity. Our data indicate that ST7 is a TSG within chromosome 7q31 and may have an important role in the development of some types of human cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Long-range genomic organization of ST7.
Figure 2: ST7 mutations in tumor-derived cell lines and primary tumors.
Figure 3: Expression profile of ST7.
Figure 4: Effect of ectopic ST7 expression on in vitro proliferation and in vivo tumorigenicity.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Hanahan, D. & Weinberg, R.A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  Google Scholar 

  2. Kibbelaar, R.E. et al. Detection of monosomy 7 and trisomy 8 in myeloid neoplasia: a comparison of banding and fluorescence in situ hybridization. Blood 82, 904–913 (1993).

    CAS  PubMed  Google Scholar 

  3. Abrahamson, G.M. et al. Comparison of cytogenetic and restriction fragment length polymorphism analyses for the detection of loss of chromosome material in clonal hemopoietic disorders. Am. J. Hematol. 42, 171–176 (1993).

    Article  CAS  Google Scholar 

  4. Gupta, P.K. et al. High frequency in vivo loss of heterozygosity is primarily a consequence of mitotic recombination. Cancer Res. 57, 1188–1193 (1997).

    CAS  PubMed  Google Scholar 

  5. Zenklusen, J.C. & Conti, C.J. Cytogenetic, molecular and functional evidence for novel tumor suppressor genes on the long arm of human chromosome 7. Mol. Carcinog. 15, 167–175 (1996).

    Article  CAS  Google Scholar 

  6. Bieche, I. et al. Loss of heterozygosity on chromosome 7q and aggressive primary breast cancer. Lancet 339, 139–143 (1992).

    Article  CAS  Google Scholar 

  7. Zenklusen, J.C., Bieche, I., Lidereau, R. & Conti, C.J. (C-A)n microsatellite repeat D7S522 is the most commonly deleted region in human primary breast cancer. Proc. Natl. Acad. Sci. USA 91, 12155–12158 (1994).

    Article  CAS  Google Scholar 

  8. Zenklusen, J.C., Thompson, J.C., Troncoso, P., Kagan, J. & Conti, C.J. Loss of heterozygosity in human primary prostate carcinomas: a possible tumor suppressor gene at 7q31.1. Cancer Res. 54, 6370–6373 (1994).

    CAS  PubMed  Google Scholar 

  9. Cunningham, J.M. et al. Allelic imbalance and microsatellite instability in prostatic adenocarcinoma. Cancer Res. 56, 4475–4482 (1996).

    CAS  PubMed  Google Scholar 

  10. Koike, M. et al. Frequent loss of heterozygosity in the region of the D7S523 locus in advanced ovarian cancer. Genes Chromosomes Cancer 19, 1–5 (1997).

    Article  CAS  Google Scholar 

  11. Zenklusen, J.C., Weitzel, J.N., Ball, H.G. & Conti, C.J. Allelic loss at 7q31.1 in human primary ovarian carcinomas suggests the existence of a tumor suppressor gene. Oncogene 11, 359–363 (1995).

    CAS  PubMed  Google Scholar 

  12. Zenklusen, J.C., Thompson, J.C., Klein-Szanto, A.J. & Conti, C.J. Frequent loss of heterozygosity in human primary squamous cell and colon carcinomas at 7q31.1: evidence for a broad range tumor suppressor gene. Cancer Res. 55, 1347–1350 (1995).

    CAS  PubMed  Google Scholar 

  13. Nishizuka, S., Tamura, G., Terashima, M. & Satodate, R. Commonly deleted region on the long arm of chromosome 7 in differentiated adenocarcinoma of the stomach. Br. J. Cancer 76, 1567–1571 (1997).

    Article  CAS  Google Scholar 

  14. Achille, A. et al. Chromosome 7q allelic losses in pancreatic carcinoma. Cancer Res. 56, 3808–3813 (1996).

    CAS  PubMed  Google Scholar 

  15. Shridhar, V. et al. Loss of heterozygosity on the long arm of human chromosome 7 in sporadic renal cell carcinomas. Oncogene 15, 2727–2733 (1997).

    Article  CAS  Google Scholar 

  16. Neuman, W.L. et al. Chromosomal loss and deletion are the most common mechanisms for loss of heterozygosity from chromosomes 5 and 7 in malignant myeloid disorders. Blood 79, 1501–1510 (1992).

    CAS  PubMed  Google Scholar 

  17. Ogata, T. et al. Genetic complementation of the immortal phenotype in group D cell lines by introduction of chromosome 7. Jpn. J. Cancer Res. 86, 35–40 (1995).

    Article  CAS  Google Scholar 

  18. Ogata, T. et al. Chromosome 7 suppresses indefinite division of nontumorigenic immortalized human fibroblast cell lines KMST-6 and SUSM-1. Mol. Cell. Biol. 13, 6036–6043 (1993).

    Article  CAS  Google Scholar 

  19. Zenklusen, J.C., Oshimura, M., Barrett, J.C. & Conti, C.J. Inhibition of tumorigenicity of a murine squamous cell carcinoma (SCC) cell line by a putative tumor suppressor gene on human chromosome 7. Oncogene 9, 2817–2825 (1994).

    CAS  PubMed  Google Scholar 

  20. Zenklusen, J.C., Hodges, L.C., LaCava, M., Green, E.D. & Conti, C.J. Definitive functional evidence for a tumor suppressor gene on human chromosome 7q31.1 neighboring the Fra7G site. Oncogene 19, 1729–1733 (2000).

    Article  CAS  Google Scholar 

  21. Matsuda, T. et al. Human chromosome 7 carries a putative tumor suppressor gene(s) involved in choriocarcinoma. Oncogene 15, 2773–2781 (1997).

    Article  CAS  Google Scholar 

  22. Zenklusen, J.C., Weintraub, L.A. & Green, E.D. Construction of a high-resolution physical map of the approximate 1-Mb region of human chromosome 7q31.1–q31.2 harboring a putative tumor suppressor gene. Neoplasia 1, 16–22 (1999).

    Article  CAS  Google Scholar 

  23. Deloukas, P. et al. A physical map of 30,000 human genes. Science 282, 744–746 (1998).

    Article  CAS  Google Scholar 

  24. Bouffard, G.G. et al. A physical map of human chromosome 7: an integrated YAC contig map with average STS spacing of 79 kb. Genome Res. 7, 673–692 (1997).

    Article  CAS  Google Scholar 

  25. Burge, C.B. & Karlin, S. Finding the genes in genomic DNA. Curr. Opin. Struct. Biol. 8, 346–354 (1998).

    Article  CAS  Google Scholar 

  26. Xu, Y., Einstein, J.R., Mural, R.J., Shah, M. & Uberbacher, E.C. An improved system for exon recognition and gene modeling in human DNA sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 376–384 (1994).

    CAS  PubMed  Google Scholar 

  27. Zhang, J. & Madden, T. PowerBLAST: a new network BLAST application for interactive or automated sequence analysis annotation. Genome Res. 7, 649–656 (1997).

    Article  CAS  Google Scholar 

  28. Seibert, F., Loo, T., Clarke, D. & Riordan, J. Cystic fibrosis: channel, catalytic, and folding properties of the CFTR protein. J. Bioenerg. Biomembr. 29, 429–442 (1997).

    Article  CAS  Google Scholar 

  29. Vande Woude, G. et al. Met-HGF/SF: tumorigenesis, invasion, and metastasis. Ciba Found. Symp. 212, 119–132 (1997).

    CAS  PubMed  Google Scholar 

  30. Dale, T. et al. Compartment switching of WNT-2 expression in human breast tumors. Cancer Res. 56, 4320–4323 (1996).

    CAS  PubMed  Google Scholar 

  31. Chang, W.J. et al. Purification and characterization of smooth muscle cell caveolae. J. Cell Biol. 126, 127–138 (1994).

    Article  CAS  Google Scholar 

  32. Hurlstone, A.F. et al. Analysis of the CAVEOLIN-1 gene at human chromosome 7q31.1 in primary tumours and tumour-derived cell lines. Oncogene 18, 1881–1890 (1999).

    Article  CAS  Google Scholar 

  33. Caldwell, J.E., Heiss, S.G., Mermall, V. & Cooper, J.A. Effects of CapZ, an actin capping protein of muscle, on the polymerization of actin. Biochemistry 28, 8506–8514 (1989).

    Article  CAS  Google Scholar 

  34. Frohman, M.A., Dush, M.K. & Martin, G.R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc. Natl. Acad. Sci. USA 85, 8998–9002 (1988).

    Article  CAS  Google Scholar 

  35. Tuvia, S., Buhusi, M., Davis, L., Reedy, M. & Bennett, V. Ankyrin-B is required for intracellular sorting of structurally diverse Ca2+ homeostasis proteins. J. Cell Biol. 147, 995–1008 (1999).

    Article  CAS  Google Scholar 

  36. Vincent, J.B. et al. Identification of a novel gene on chromosome 7q31 that is interrupted by a translocation breakpoint in an autistic individual. Am. J. Hum. Genet. 67, 510–514 (2000).

    Article  CAS  Google Scholar 

  37. Corpet, F., Servant, F., Gouzy, J. & Kahn, D. ProDom and ProDom-CG: tools for protein domain analysis and whole genome comparisons. Nucleic Acids Res. 28, 267–269 (2000).

    Article  CAS  Google Scholar 

  38. Kaighn, M.E., Lechner, J.F., Narayan, K.S. & Jones, L.W. Prostate carcinoma: tissue culture cell lines. Natl. Cancer Inst. Monogr. 49, 17–21 (1978).

    Google Scholar 

  39. Sprenger, C.C., Damon, S.E., Hwa, V., Rosenfeld, R.G. & Plymate, S.R. Insulin-like growth factor binding protein-related protein 1 (IGFBP-rP1) is a potential tumor suppressor protein for prostate cancer. Cancer Res. 59, 2370–2375 (1999).

    CAS  PubMed  Google Scholar 

  40. Trovato, M. et al. Loss of heterozygosity of the long arm of chromosome 7 in follicular and anaplastic thyroid cancer, but not in papillary thyroid cancer. J. Clin. Endocrinol. Metab. 84, 3235–3240 (1999).

    Article  CAS  Google Scholar 

  41. Koike, M., Tasaka, T., Spira, S., Tsuruoka, N. & Koeffler, H.P. Allelotyping of acute myelogenous leukemia: loss of heterozygosity at 7q31.1 (D7S486) and q33–34 (D7S498, D7S505). Leuk. Res. 23, 307–310 (1999).

    Article  CAS  Google Scholar 

  42. Bieche, I., Khodja, A., Driouch, K. & Lidereau, R. Genetic alteration mapping on chromosome 7 in primary breast cancer. Clin. Cancer Res. 3, 1009–1016 (1997).

    CAS  PubMed  Google Scholar 

  43. Lin, J.C. et al. Detailed deletion mapping with a refined physical map of 7q31 localizes a putative tumor suppressor gene for breast cancer in the region of MET. Oncogene 13, 2001–2008 (1996).

    CAS  PubMed  Google Scholar 

  44. Black, D.M. Characterization of a multi-tissue tumour suppressor and senescence gene. Br. J. Cancer 80 (Suppl. 1), 42–45 (1999).

    CAS  PubMed  Google Scholar 

  45. Tatarelli, C., Linnenbach, A., Mimori, K. & Croce, C.M. Characterization of the human TESTIN gene localized in the FRA7G region at 7q31.2. Genomics 68, 1–12 (2000).

    Article  CAS  Google Scholar 

  46. Michaels, J.E., Schimmel, P., Shiba, K. & Miller, W.T. Dominant negative inhibition by fragments of a monomeric enzyme. Proc. Natl. Acad. Sci. USA 93, 14452–14455 (1996).

    Article  CAS  Google Scholar 

  47. El-Naggar, A.K. et al. Methylation, a major mechanism of p16/CDKN2 gene inactivation in head and neck squamous carcinoma. Am. J. Pathol. 151, 1767–1774 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Myohanen, S.K., Baylin, S.B. & Herman, J.G. Hypermethylation can selectively silence individual p16ink4A alleles in neoplasia. Cancer Res. 58, 591–593 (1998).

    CAS  Google Scholar 

  49. Huang, H. et al. Frequent deletions within FRA7G at 7q31.2 in invasive epithelial ovarian cancer. Genes Chromosomes Cancer 24, 48–55 (1999).

    Article  CAS  Google Scholar 

  50. Moore, D.D. Preparation and analysis of DNA. in Current Protocols in Molecular Biology (eds. Ausubel, F.M. et al.) 2.1.0–2.3.8 (Greene Publishing and John Wiley Sons, New York, 1992).

    Google Scholar 

Download references

Acknowledgements

We thank the Washington University Genome Sequencing Center for generating the high-quality sequence that facilitated the identification of ST7; S. Hoogstraten-Miller for assistance in the animal studies; and B. Vogelstein, F. Collins, P. Meltzer, A. Baxevanis, J. Thomas and L. Everett for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean C. Zenklusen or Eric D. Green.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zenklusen, J., Conti, C. & Green, E. Mutational and functional analyses reveal that ST7 is a highly conserved tumor-suppressor gene on human chromosome 7q31. Nat Genet 27, 392–398 (2001). https://doi.org/10.1038/86891

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/86891

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing