Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct activation of TERT transcription by c-MYC

Abstract

The MYC proto-oncogene encodes a ubiquitous transcription factor (c–MYC) involved in the control of cell proliferation and differentiation1. Deregulated expression of c–MYC caused by gene amplification, retroviral insertion, or chromosomal translocation is associated with tumorigenesis2. The function of c–MYC and its role in tumorigenesis are poorly understood because few c–MYC targets have been identified3. Here we show that c–MYC has a direct role in induction of the activity of telomerase, the ribonucleoprotein complex expressed in proliferating and transformed cells, in which it preserves chromosome integrity by maintaining telomere length4,5,6. c–MYC activates telomerase by inducing expression of its catalytic subunit, telomerase reverse transcriptase7,8,9 (TERT). Telomerase complex activity is dependent on TERT, a specialized type of reverse transcriptase10,11. TERT and c–MYC are expressed in normal and transformed proliferating cells, downregulated in quiescent and terminally differentiated cells1,9,12,13, and can both induce immortalization when constitutively expressed in transfected cells2,10,11. Consistent with the recently reported association between MYC overexpression and induction of telomerase activity14, we find here that the TERT promoter contains numerous c–MYC–binding sites that mediate TERT transcriptional activation. c–MYC–induced TERT expression is rapid and independent of cell proliferation and additional protein synthesis, consistent with direct transcriptional activation of TERT. Our results indicate that TERT is a target of c–MYC activity and identify a pathway linking cell proliferation and chromosome integrity in normal and neoplastic cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MYC overexpression is associated with induction of TERT expression and increased telomerase activity.
Figure 2: Induction of TERT expression and telomerase activity by c–MYC in the absence of cell proliferation.
Figure 3: Upregulation of TERT expression by c–MYC is independent of new protein synthesis.
Figure 4: C–MYC/MAX binding sites in the promoter region of human TERT .
Figure 5: Transcriptional activation of the TERT promoter by c–MYC.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Henriksson, M. & Luscher, B. Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv. Cancer. Res. 68, 109–182 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  2. Bouchard, C., Staller, P. & Eilers. M. Control of cell proliferation by Myc. Trends Cell Biol. 8, 202–206 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Grandori, C. & Eisenman, R.N. Myc target genes. Trends Biochem. Sci. 22, 177–181 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Nugent, C.I. & Lundblad, V. The telomerase reverse transcriptase: components and regulation. Genes Dev. 12, 1073–1085 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Wright, W.E. & Shay, J.W. Time, telomere, and tumour: is cellular senescence more than an anticancer mechanism? Trends Cell Biol. 5, 293–297 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  6. Lingner, J. & Cech, T. Telomerase and chromosome end maintenance. Curr. Opin. Genet. Dev. 8, 226– 232 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Lingner, J. et al. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276, 561–567 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Nakamura, T.M. et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 277, 955– 959 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Meyerson, M. et al. hEST2, the putative human telomerase catalytic subunit gene, is up–regulated in tumour cells and during immortalization. Cell 90, 785–795 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  10. Bodnar, A.G. et al. Extension of life–span by introduction of telomerase into normal human cells. Science 279, 350 –352 (1998).

    Article  Google Scholar 

  11. Counter, C.M. et al. Telomerase activity is restored in human cells by ectopic expression of hTERT(hEST2), the catalytic subunit of telomerase. Oncogene 16, 1217–1222 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  12. Ramakrishnan, S., Eppenberger, U., Mueller, H., Shinkai, Y. & Narayanan, R. Expression profile of the putative catalytic subunit of the telomerase gene. Cancer Res. 58, 622–625 (1998).

    CAS  PubMed  Google Scholar 

  13. Greenberg, R.A., Allsopp, R.C., Chin, L., Morin, G.B. & DePinho, R.A. Expression of mouse telomerase reverse transcriptase during development, differentiation, and proliferation. Oncogene 16, 1723–1730 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, J., Xie, L.Y., Allan, S., Beach, D. & Hannon, G.J. Myc activates telomerase. Genes Dev. 12, 1769–1774 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gu, W., Cechova, K., Tassi, V. & Dalla–Favera, R. Opposite regulation of gene transcription and cell proliferation by c–Myc and Max. Proc. Natl Acad. Sci. USA 90, 2935– 2939 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Larsson, L.–G. et al. Phorbol ester–induced terminal differentiation is inhibited in human U–937 monoblastic cells expressing a v–Myc oncogene. Proc. Natl Acad. Sci. USA 85, 2638– 2642 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kempkes, B. et al. B–cell proliferation and induction of early G1–regulating proteins by Epstein–Barr virus mutants conditional for EBNA2. EMBO J. 14, 88–96 ( 1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Holt, S.E., Wright, W.E. & Shay, J.W. Regulation of telomerase activity in immortal cell lines. Mol. Cell. Biol. 16, 2932– 2939 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Igarashi, H. & Sakaguchi, N. Telomerase activity is induced in human peripheral B lymphocytes by the stimulation to antigen receptor. Blood 89, 1299–1307 (1997).

    CAS  PubMed  Google Scholar 

  20. Littlewood, T.D., Hancock, D.C., Danielian, P.C., Parker, M.G. & Evan, G.I. A modified estrogen receptor ligand–binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res. 23, 1686– 1690 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sasson, S. Equilibrium binding analysis of estrogen agonists and antagonists: relation to the activation of the estrogen receptor. Pathol. Biol. 39, 59–69 (1991).

    CAS  PubMed  Google Scholar 

  22. Grandori, C., Mac, J., Siebelt, F., Ayer, D.E. & Eisenman, R.N. Myc–Max heterodimers activate a DEAD box gene and interact with multiple E box–related sites in vivo. EMBO J. 15, 4344–4357 ( 1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ayer, D.E., Kretzner, L. & Eisenman, R.N. Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell 72, 211 –222 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Nordeen, S.K. Luciferase reporter gene vectors for analysis of promoters and enhancers. Biotechniques 6, 454–458 (1988).

    CAS  PubMed  Google Scholar 

  25. Kim, N.M. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011– 2015 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Pan, C., Xue, B.H., Ellis, T.M., Peace, D.J. & Diaz, M.O. Changes in telomerase activity and telomere length during human T lymphocyte senescence. Exp. Cell Res. 231, 346–353 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Polack, A. et al. c–Myc activation renders proliferation of Epstein–Barr virus(EBV)–transformed cells independent of EBV nuclear antigen 2 and latent membrane protein 1. Proc. Natl Acad. Sci. USA 93, 10411–10416 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dalla–Favera, R. et al. Cloning and characterization of different human sequences related to the onc gene (v–myc) of avian myelocytomatosis virus (MC29). Proc. Natl Acad. Sci. USA 79, 6497– 6501 (1982).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wu, K.J., Polack, A. & Dalla–Favera, R. Coordinated regulation of iron controlling genes, H–ferritin and IRP2, by c–MYC. Science (in press).

  30. Stone, J. et al. Definition of regions in human c–myc that are involved in transformation and nuclear localization. Mol. Cell. Biol. 7, 1697–1709 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Littlewood for pBabe–MycER vectors; B. Kempkes and G. Bornkamm for the EREB cell line; Y. Shiio for baculovirus MAX; O. Zilian for the human genomic library; Geron for the TERT cDNA clone; M. Nabholz, A.L. Ducrest, B. Amati and O. Zilian for useful discussions; R. Eisenman for support and critical discussions; and S. Hirst for technical assistance. J.L.'s laboratory is supported by grants from the Swiss National Science Foundation, Swiss Cancer Research and the ISREC. J.L. is recipient of a START–fellowship from the Swiss National Science Foundation. K.J.W. is a Fellow of the Leukemia Society of America. This work was supported in part by NIH grant CA37165, CA75125–01 and CA20525.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Dalla-Favera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, KJ., Grandori, C., Amacker, M. et al. Direct activation of TERT transcription by c-MYC. Nat Genet 21, 220–224 (1999). https://doi.org/10.1038/6010

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/6010

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing