Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A missense mutation in the αB-crystallin chaperone gene causes a desmin-related myopathy

Abstract

Desmin-related myopathies (DRM) are inherited neuromuscular disorders characterized by adult onset and delayed accumulation of aggregates of desmin, a protein belonging to the type III intermediate filament family, in the sarcoplasma of skeletal and cardiac muscles1,2. In this paper, we have mapped the locus for DRM in a large French pedigree to a 26-cM interval in chromosome 11q21–23. This region contains the αB-crystallin gene (CRYAB), a candidate gene encoding a 20-kD protein that is abundant in lens and is also present in a number of non-ocular tissues, including cardiac and skeletal muscle3,4. αB-crystallin is a member of the small heat shock protein (shsp) family and possesses molecular chaperone activity5. We identified an R120G missense mutation in CRYAB that co-segregates with the disease phenotype in this family. Muscle cell lines transfected with the mutant CRYAB cDNA showed intracellular aggregates that contain both desmin and αB-crystallin as observed in muscle fibers from DRM patients. These results are the first to identify a defect in a molecular chaperone as a cause for an inherited human muscle disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pedigree and genotypic analysis of a DRM family.
Figure 2: Transverse cryostat sections of the muscle from a DRM patient (III8 on pedigree).
Figure 3: Cytoplasmic aggregates are formed in desmin-containing cells transfected with R120G αB-crystallin cDNA.
Figure 4: Ultrastructural analysis of aggregates in BHK21 cells transfected with R120G αB-crystallin cDNA.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Goebel, H. & Fardeau, M. Familial Desmin-related myopathies and cardiomyopathies from myopathology to molecular and clinical genetics. Neuromuscul. Disord. 6, 383–388 (1996).

    Article  CAS  Google Scholar 

  2. Fuchs, E. & Cleveland, D. A structural scaffolding of intermediate filaments in health and disease. Science 279, 514–519 (1998).

    Article  CAS  Google Scholar 

  3. Bhat, S. & Nagineni, C. αB subunit of lens-specific protein α-crystallin is present in other ocular and nonocular tissue. Biochem. Biophys. Res. Commun. 158, 319–325 (1989).

    Article  CAS  Google Scholar 

  4. Dubin, R., Wawrousek, E. & Piatigorsky, J. Expression of the murine αB-crystallin is not restricted to the lens. Mol. Cell Biol. 9, 1083–1091 (1989).

    Article  CAS  Google Scholar 

  5. Graw, J. The crystallins: genes, proteins and diseases. Biol. Chem. 378, 1331–1348 (1997).

    CAS  PubMed  Google Scholar 

  6. Fardeau, M. et al. Une nouvelle affection musculaire familiale définie par l’accumulation intra-sarcoplasmique d’un matériel granulofilamentaire dense en microscopie electronique. Rev. Neurol. (Paris) 134, 411–425 (1978).

    CAS  Google Scholar 

  7. Rappaport, L. et al. Storage of phosphorylated desmin in a familial myopathy. FEBS Lett. 231, 421–425 (1988).

    Article  CAS  Google Scholar 

  8. Vicart, P. et al. Human desmin gene: cDNA sequence, regional localization and exclusion of the locus in a familial desmin-related myopathy. Hum. Genet. 98, 422–429 (1996).

    Article  CAS  Google Scholar 

  9. JeanPierre, C., Austry, E., Delattre, O., Jones, C. & Junien, C. Subregional physical mapping of an αβ-crystallin sequence and of a new expressed sequence D11S877E to human 11q. Mamm. Genome 4, 104–108 (1993).

    Article  CAS  Google Scholar 

  10. Collins, A., Frézal, J., Teague, J. & Morton, N.E. A metric map of humans: 23,500 loci in 850 bands. Proc. Natl Acad. Sci. USA 93, 14771–14775 (1996).

    Article  CAS  Google Scholar 

  11. Li, Z. et al. Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation, and fusion of skeletal muscle. J. Cell Biol. 139, 129–144 (1997).

    Article  CAS  Google Scholar 

  12. Bennardini, F., Wrzosck, A. & Chiesi, M. αB-crystallin in cardiac tissue: association with actin and desmin filaments. Circ. Res. 71, 288–294 (1992).

    Article  CAS  Google Scholar 

  13. Djabali, K., deNéchaud, B., Landon, F. & Portier, M. αB-crystallin interacts with intermediate filaments in response to stress. J. Cell Sci. 110, 2759–2769 (1997).

    PubMed  Google Scholar 

  14. Liao, J., Hung, C., Lee, J., Wu, S. & Chiou, S. Characterization, cloning, and expression of porcine alpha-B crystallin. Biochem. Biophys. Res. Commun. 244, 131–137 (1998).

    Article  CAS  Google Scholar 

  15. Suzuki, A. et al. MKBP, a novel member of the small heat shock protein family, binds and activates the myotonic dystrophy protein kinase. J. Cell Biol. 140, 1113–1124 (1998).

    Article  CAS  Google Scholar 

  16. Litt, M. et al. Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA. Hum. Mol. Genet. 7, 471–474 (1998).

    Article  CAS  Google Scholar 

  17. Martin, J., Mestril, R., Hilaldandan, R., Brunton, L. & Dillmann, W. Small heat shock proteins and protection against ischemic injury in cardiac myocytes. Circulation 96, 4343–4348 (1997).

    Article  CAS  Google Scholar 

  18. Vandeklundert, F., Gijsen, M., Vandenijssel, P., Snoeckx, L. & Dejong, W. Alpha-B-crystallin and Hsp25 in neonatal cardiac cells. Differences in cellular localization under stress conditions. Eur. J. Cell Biol. 75, 38–45 (1998).

    Article  CAS  Google Scholar 

  19. Neufer, P., Ordway, G. & Williams, R. Transient regulation of c-fos, α-B-crystallin, and hsp70 in muscle during recovery from contractile activity. Am. J. Physiol. 43, C341–C346 (1998).

    Article  Google Scholar 

  20. Lobrinus, J.A. et al. Familial cardiomyopathy and distal myopathy with an abnormal desmin accumulation and migration. Neuromuscul. Disord. 8, 77–86 (1998).

    Article  CAS  Google Scholar 

  21. Bertini, E. et al. Neuropathy and restrictive cardiomyopathy with accumulation of intermediate filaments: a clinical, morphological and biochemical study. Acta Neuropathol. 81, 632–640 (1991).

    Article  CAS  Google Scholar 

  22. Baeta, A., Figarella-Branger, D., Bille-Turc, F., Lepidi, H. & Pellissier, J.-F. Familial desmin myopathies and cytoplasmic body myopathies. Acta Neuropathol 92, 499–510 (1996).

    Article  CAS  Google Scholar 

  23. Horowitz, S. & Schmalbruch, H. Autosomal dominant distal myopathy with desmin storage: a clinicopathologic and electrophysiologic study of a large kinship. Muscle Nerve 17, 151–160 (1994).

    Article  CAS  Google Scholar 

  24. Iwaki, T., Kume-Iwaki, A., Liem, R. & Goldman, J. αB-crystallin is expressed in non-lenticular tissues and accumulates in Alexander's disease brain. Cell 57, 71–78 (1989).

    Article  CAS  Google Scholar 

  25. Kato, S. et al. Pathological characterization of astrocytic hyaline inclusions in familial amyotrophic lateral sclerosis. Am. J. Pathol. 151, 611–620 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Dib, C. et al. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 14, 152–154 (1996).

    Article  Google Scholar 

  27. Gyapay, G., Ginot, F., Nguyen, S., Vignal, A. & Weissenbach, J. Genotyping procedures in linkage mapping. Meth. Enzymol. 9, 91–97 (1996).

    Article  CAS  Google Scholar 

  28. Vignal, A. et al. Non-radioactive multiplex procedure for genotyping of microsatellite markers. in Meth. Mol. Genet. (ed. Adolph, K.W.) 211–221 (Academic Press, New York, 1993).

    Google Scholar 

  29. Helbling-Leclerc, A. et al. Mutations in the laminin α 2-chain gene (LAMA2) cause merosin- deficient congenital muscular dystrophy. Nature Genet. 11, 216–218 (1995).

    Article  CAS  Google Scholar 

  30. Tilney, L. & Portnoy, D. Actin filaments and the growth, movement and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol. 109, 1597–1608 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the family members for their help with this study. We also acknowledge R. Hellio for assistance with confocal microscopy. We thank M.M. Portier, G. Butler-Browne and R. Krishnamoorthy for helpful discussion. This work was supported by Association Française contre les Myopathies and Ministère de l’Education Nationale, de l'Enseignement Supérieur et de la Recherche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Vicart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vicart, P., Caron, A., Guicheney, P. et al. A missense mutation in the αB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 20, 92–95 (1998). https://doi.org/10.1038/1765

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/1765

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing