Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice

Abstract

The resilience and strength of bone is due to the orderly mineralization of a specialized extracellular matrix (ECM) composed of type I collagen (90%) and a host of non-collagenous proteins that are, in general, also found in other tissues. Biglycan (encoded by the gene Bgn) is an ECM proteoglycan that is enriched in bone1,2,3 and other non-skeletal connective tissues. In vitro studies indicate that Bgn may function in connective tissue metabolism by binding to collagen fibrils4 and TGF-ß (Refs 5,6), and may promote neuronal survival7. To study the role of Bgn in vivo, we generated Bgn-deficient mice. Although apparently normal at birth, these mice display a phenotype characterized by a reduced growth rate and decreased bone mass due to the absence of Bgn. To our knowledge, this is the first report in which deficiency of a non-collagenous ECM protein leads to a skeletal phenotype that is marked by low bone mass that becomes more obvious with age. These mice may serve as an animal model to study the role of ECM proteins in osteoporosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Disruption of the mouse Bgn locus.
Figure 2: Radiological analysis of bones from Bgn+/0 and Bgn–/0 mice.
Figure 3: Histological analysis of bones from Bgn+/0 (0/+) and Bgn–/0 (0/-) mice.
Figure 4: Analysis of bone formation by in vivo labelling with fluorescent markers of mineralization.
Figure 5: Bone histomorphometry.

Similar content being viewed by others

References

  1. Fisher, L.W. et al. Proteoglycans of developing bone. J. Biol. Chem. 258, 6588–6594 (1983).

    CAS  PubMed  Google Scholar 

  2. Bianco, P., Fisher, L.W., Young, M.F., Termine, J.D. & Robey, P.G. Expression and localization of the two small proteoglycans biglycan and decorin in developing human skeletal and non-skeletal tissues. J. Histochem. Cytochem. 38, 1549–1563 (1990).

    Article  CAS  Google Scholar 

  3. Fisher, L.W., Termine, J.D. & Young, M.F. Deduced protein sequence of bone small proteoglycan I (biglycan) shows homology with proteoglycan II (decorin) and several nonconnective tissue proteins in a variety of species. J. Biol. Chem. 264, 4571–4576 (1989).

    CAS  PubMed  Google Scholar 

  4. Schönherr, E. et al. Interaction of biglycan with type I collagen. J. Biol. Chem. 270, 2776–2783 (1995).

    Article  Google Scholar 

  5. Yamaguchi, Y., Mann, D.M. & Ruoslahti, E. Negative regulation of transforming growth factor-beta by the proteoglycan decorin. Nature 346, 281–284 (1990).

    Article  CAS  Google Scholar 

  6. Hildebrand, A. et al. Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta. Biochem. J. 302, 527–534 (1994).

    Article  CAS  Google Scholar 

  7. Kappler, J. et al. Chondroitin/dermatan sulphate promotes the survival of neurons from rat embryonic neocortex. Eur. J. Neurosci. 9, 306–318 (1997).

    Article  CAS  Google Scholar 

  8. Iozzo, R.V. & Murdoch, A.D. Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function. FASEB J. 10, 598–614 (1996).

    Article  CAS  Google Scholar 

  9. Ruoslahti, E. Proteoglycans in cell regulation. J. Biol. Chem. 264, 13369–13372 (1989).

    CAS  PubMed  Google Scholar 

  10. Ruoslahti, E. & Yamaguchi, Y. Proteoglycans as modulators of growth factor activities. Cell 64, 867–869 (1991).

    Article  CAS  Google Scholar 

  11. Vetter, U.K. et al. in Basic and Clinical Approach to Turner Syndrome (eds Hibi, I. & Takano, K.) 143–146 (Elsevier, Amsterdam,1993).

    Google Scholar 

  12. Parfitt, A.M. et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 2, 595–610 (1987).

    Article  CAS  Google Scholar 

  13. Boskey, A.L., Pleshko, N., Doty, S. & Mendelsohn, R. Applications of Fourier Transform InfraRed (FT-IR) microscopy to the study of mineralization in bone and cartilage. Cells & Materials 2, 209–220 (1992).

    Google Scholar 

  14. Boskey, A.L., Spevak, L., Doty, S.B. & Rosenberg, L. Effects of bone CS-proteoglycans, DS-decorin, and DS-biglycan on hydroxyapatite formation in a gelatin gel. Calcif. Tissue Int. 61, 298–305 (1997).

    Article  CAS  Google Scholar 

  15. Bonadio, J. et al. A murine skeletal adaptation that significantly increases cortical bone mechanical properties. Implications for human skeletal fragility. J. Clin. Invest. 92, 1697–1705 (1993).

    Article  CAS  Google Scholar 

  16. Kuro-o, M. et al. Mutation of the mouse klotho gene leads to a syndrome resembling aging. Nature 390, 45–51 (1997).

    Article  CAS  Google Scholar 

  17. Lewis, D.B. et al. Osteoporosis induced in mice by overproduction of interleukin 4. Proc. Natl Acad. Sci. USA 90, 11618–11622 (1993).

    Article  CAS  Google Scholar 

  18. Erlebacher, A. & Derynck, R. Increased expression of TGF-beta 2 in osteoblasts results in an osteoporosis-like phenotype. J. Cell Biol. 132, 195–210 (1996).

    Article  CAS  Google Scholar 

  19. Takahashi, T., Wada, T., Mori, M., Kokai, Y. & Ishii, S. Overexpression of the granulocyte colony-stimulating factor gene leads to osteoporosis in mice. Lab Invest. 74, 827–834 (1996).

    CAS  PubMed  Google Scholar 

  20. Riggs, B.L. & Melton, L.J. 3rd. Involutional osteoporosis. N. Engl. J. Med. 314, 1676–1686 (1986).

    Article  CAS  Google Scholar 

  21. Bucay, N. et al. osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 12, 1260–1268 (1998).

    Article  CAS  Google Scholar 

  22. Prockop, D.J. & Kivirikko, K.I. Collagens: molecular biology, diseases, and potentials for therapy. Annu. Rev. Biochem. 64, 403–434 (1995).

    Article  CAS  Google Scholar 

  23. Danielson, K.G. et al. Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J. Cell Biol. 136, 729–743 (1997).

    Article  CAS  Google Scholar 

  24. Gilmour, D.T. et al. Mice deficient for the secreted glycoprotein SPARC/osteonectin/BM40 develop normally but show severe age-onset cataract formation and disruption of the lens. EMBO J. 17, 1860–1870 (1998).

    Article  CAS  Google Scholar 

  25. Ducy, P. et al. Increased bone formation in osteocalcin-deficient mice. Nature 382, 448–452 (1996).

    Article  CAS  Google Scholar 

  26. Tybulewicz, V.L., Crawford, C.E., Jackson, P.K., Bronson, R.T. & Mulligan, R.C. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65, 1153–1163 (1991).

    Article  CAS  Google Scholar 

  27. Li, E., Bestor, T.H. & Janeisch, R. Targeted mutation of the DNA methyl transferase gene results in embryonic lethality. Cell 69, 915–926 (1992).

    Article  CAS  Google Scholar 

  28. Love, P.E., Tremblay, M.L. & Westphal, H. Targeting of the T-cell receptor zeta-chain gene in embryonic stem cells: strategies for generating multiple mutations in a single gene. Proc. Natl Acad. Sci. USA 89, 9929–9933 (1992).

    Article  CAS  Google Scholar 

  29. Bradley, A. in Teratocarcinomas and Embryonic Stem Cells (ed. Robinson, E.J.) 113–151 (IRL, Oxford, 1987).

    Google Scholar 

  30. Fisher, L.W., Stubbs, J.T. Jr. & Young, M.F. Antisera and cDNA probes to human and certain animal model bone matrix noncollagenous proteins. Acta Orthop. Scand. Suppl. 266, 61–65 (1995).

    Article  CAS  Google Scholar 

  31. Vignery, A. & Baron, R. Dynamic histomorphometry of alveolar bone remodeling in the adult rat. Anat. Rec. 196, 191–200 (1980).

    Article  CAS  Google Scholar 

  32. Boyce, B.F., Yoneda, T., Lowe, C., Soriano, P. & Mundy, G.R. Requirement of pp60c-src expression for osteoclasts to form ruffled borders and resorb bone in mice. J. Clin. Invest. 90, 1622–1627 (1992).

    Article  CAS  Google Scholar 

  33. Andersson, G. & Ek-Rylander, B. The tartrate-resistant purple acid phosphatase of bone osteoclasts—a protein phosphatase with multivalent substrate specificity and regulation. Acta Orthop. Scand. Suppl. 266, 189–194 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Caden and M. Mankani for X-ray analysis, D. Porter for advice with gene targeting vector and D. Eanes, N. Marino, D. Paget, J. Liang and S. Dieúdonne for help with the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian F. Young.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, T., Bianco, P., Fisher, L. et al. Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice. Nat Genet 20, 78–82 (1998). https://doi.org/10.1038/1746

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/1746

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing