Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Expression of Xist in mouse germ cells correlates with X–chromosome inactivation

Abstract

Mammals compensate for different doses of X–chromosome–linked genes in male (XY) and female (XX) somatic cells by terminally inactivating all but one X chromosome in each cell. A transiently inactive X chromosome is also found in germ cells, specifically in premeiotic oogenic cells and in meiotic and postmeiotic spermatogenic cells. Here we show that the Xist gene, which is a expressed predominantly from the inactive X–chromosome in female somatic cells, is also expressed in germ cells of both sexes, but only at those stages when an inactive X chromosome is present. This suggests support for the putative role of Xist as a regulator of X–chromosome inactivation and suggest a common mechanism for the initiation and/or maintenance of X–chromosome inactivation in all cell types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kratzer, P.G. & Gartler, S.M. HGPRT activity changes in preimplantation mouse embryos. Nature 274, 503–504 (1978).

    Article  CAS  Google Scholar 

  2. Lyon, M.F. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190, 372–373 (1961).

    Article  CAS  Google Scholar 

  3. Gartler, S.M. & Riggs, A.D. Mammalian X-chromosome inactivation. A. Rev. Genet. 17, 155–190 (1983).

    Article  CAS  Google Scholar 

  4. Kratzer, P.G. & Chapman, V.M. X-chromosome reactivation in oocytes of Mus caroli. Proc. natn. Acad. Sci. U.S.A. 78, 3093–3097 (1981).

    Article  CAS  Google Scholar 

  5. Gartler, S.M., Liskay, R.M., Campbell, B.K., Sparkes, R. & Gant, N. Evidence for two functional X chromosomes in human ooctyes. Cell Diff. 1, 215–218 (1972).

    Article  CAS  Google Scholar 

  6. McMahon, A., Fosten, M. & Monk, M. Random X-chromosome inactivation in female primordial germ cells in the mouse. J. Embryol. exp. Morphol. 64, 251–258 (1981).

    CAS  PubMed  Google Scholar 

  7. McCarrey, J.R., Dilworth, D.D. & Sharp, R.M. Semi-quantitative analysis of X-linked gene expression during spermatogenesis in the mouse based on ethidium-bromide staining of RT-PCR products. Gen. Anal. Tech. Appl. (in the press).

  8. Singer-Sam, J., Robinson, M.O., Bellve, A.R., Simon, M.I. & Riggs, A.D. Measurement by quantitative PCR of changes in Hprt, Pgk-1, Aprt, Mtase, and Zfy gene transcripts during mouse spermatogenesis. Nucl. Acids Res. 18, 1255–1259 (1990).

    Article  CAS  Google Scholar 

  9. McCarrey, J.R. et al. Differential transcription of Pgk genes during spermatogenesis in the mouse. Devl. Biol. 153 (In the press).

  10. Grant, S.G. & Chapman, V.M. Mechanisms of X-chromosome regulation. A. Rev. Genet. 22, 199–233 (1988).

    Article  CAS  Google Scholar 

  11. Brown, S.D.M. XIST and the mapping of the X chromosome inactivation center. BioEssays 13, 607–612 (1991).

    Article  CAS  Google Scholar 

  12. Brown, C.J. et al. Localization of the X inactivation center on the human X chromosome in Xq13. Nature 349, 82–84 (1991).

    Article  CAS  Google Scholar 

  13. Brown, C.J. et al. A gene from the region of the human X inactivation center is expressed exclusively from the inactive X chromosome. Nature 349, 38–44 (1991).

    Article  CAS  Google Scholar 

  14. Borsani, G. et al. Characterization of a murine gene expressed from the inactive X chromosome. Nature 351, 325–329 (1991).

    Article  CAS  Google Scholar 

  15. Brockdorff, N. et al. Conservation of position and exclusive expression of mouse Xist from the inactive X chromosome. Nature 351, 329–332 (1991).

    Article  CAS  Google Scholar 

  16. Kafri, T. et al. Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genes Dev. 6, 705–714 (1992).

    Article  CAS  Google Scholar 

  17. Romrell, L.J., Bellve, A.R. & Fawcett, D.W. Separation of mouse spermatogenic cells by sedimentation velocity. A morphological characterization. Devl. Biol. 49, 119–131 (1976).

    Article  CAS  Google Scholar 

  18. Bellve, A.R. et al. Spermatogenic cells of the prepuberal mouse. Isolation and morphological characterization. J. Cell Biol. 74, 68–85 (1977).

    Article  CAS  Google Scholar 

  19. Hahnel, A.C. & Eddy, E.M. Cell surface markers of mouse primordial germ cells defined by two monoclonal antibodies. Gam. Res. 15, 25–34 (1986).

    Article  Google Scholar 

  20. McCarrey, J.R., Hsu, K.C., Eddy, E.M., Klevecz, R.R. & Bolen, J.L. Isolation of viable mouse primordial germ cells by antibody-directed flow sorting. J. exp. Zool. 242, 107–111 (1987).

    Article  CAS  Google Scholar 

  21. Monesi, V. Ribonucleic acid and protein synthesis during differentiation of male germ cells in the mouse. Archs Anat. microsc. Morph. Exp. 56, 61–74 (1967).

    CAS  Google Scholar 

  22. Handel, M.A., Hunt, P.A., Kot, M.C., Park, C. & Shannon, M. Role of sex chromosomes in the control of male germ-cell differentiation. Ann. N.Y. Acad. Sci. 637, 64–73 (1991).

    Article  CAS  Google Scholar 

  23. Singer-Sam, J., Goldstein, L., Dai, A., Gartler, S.M. & Riggs, A.D. A potentially critical Hpa II site of the X chromosome-linked PGK1 gene is unmethylated prior to the onset of meiosis of human oogenic cells. Proc. natn. Acad. Sci. U.S.A. 89, 1413–1417 (1992).

    Article  CAS  Google Scholar 

  24. Venolia, L., Cooper, D.W., O'Brien, D.A., Millette, C.F. & Gartler, S.M. Transformation of the Hprt gene with DNA from spermatogenic cells. Implications for the evolution of X-chromosome inactivation. Chromosoma 90, 185–189 (1984).

    Article  CAS  Google Scholar 

  25. Ballabio, A. & Willard, H.F. Mammalian X-chromosome inactivation and the XIST gene. Curr. Opin. Genet. Dev. 2, 439–447 (1992).

    Article  CAS  Google Scholar 

  26. Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J. & Rutter, W.J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294–5299 (1979).

    Article  CAS  Google Scholar 

  27. Hahnel, A.C. et al. Two alkaline phosphatase genes are expressed during early development in the mouse embryo. Development 110, 555–564 (1990).

    CAS  PubMed  Google Scholar 

  28. Dilworth, D.D. & McCarrey, J.R. Single-step elimination of contaminating DNA prior to reverse transcriptase PCR. PCR Meth. Applic. 1, 279–282 (1992).

    Article  CAS  Google Scholar 

  29. Tokunaga, K., Taniguchi, H., Yoda, K., Shimizu, M. & Sakiyama, S. Nucleotide sequence of a full-length cDNA for mouse cytoskeletal β-actin mRNA. Nucl. Acids Res. 14, 2829 (1986).

    Article  CAS  Google Scholar 

  30. Murakawa, G.J. et al. Direct detection of HIV-1 RNA from AIDS and ARC patient samples. DNA 7, 287–295 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCarrey, J., Dilworth, D. Expression of Xist in mouse germ cells correlates with X–chromosome inactivation. Nat Genet 2, 200–203 (1992). https://doi.org/10.1038/ng1192-200

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1192-200

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing