Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Duplication of ATR inhibits MyoD, induces aneuploidy and eliminates radiation-induced G1 arrest

Abstract

Chromosome 3q alterations occur frequently in many types of tumours. In a genetic screen for loci present in rhabdomyosarcomas, we identified an isochromosome 3q [i(3q)], which inhibits muscle differentiation when transferred into myoblasts. The i(3q) inhibits MyoD function, resulting in a non-differentiating phenotype. Furthermore, the i(3q) induces a ‘cut’ phenotype, abnormal centrosome amplification, aneuploidy and loss of G1 arrest following γ-irradiation. Testing candidate genes within this region reveals that forced expression of ataxiatelangiectasia and rad3-related (ATR) results in a phenocopy of the i(3q). Thus, genetic alteration of ATR leads to loss of differentiation as well as cell-cycle abnormalities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dias, P., Parham, D.M., Shapiro, D.N., Webber, B.L. & Houghton, P.J. Myogenic regulatory protein (MyoD1) expression in childhood solid tumours: diagnostic utility in rhabdomyosarcoma. Am. J. Pathol. 137, 1283–1291 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Scrable, H.J., Johnson, D.K., Rinchik, E.M. & Cavenee, W.K. Rhabdomyosarcoma-associated locus and MYOD1 are syntenic but separate loci on the short arm of human chromosome 11. Proc. Natl. Acad. Sci. USA 87, 2182–2186 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Weintraub, H. et al. Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc. Natl. Acad. Sci. USA 86, 5434–5438 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tapscott, S.J., Thayer, M.J. & Weintraub, H. Deficiency in rhabdomyosarcomas of a factor required for MyoD activity and myogenesis. Science 259, 1450–1453 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Barr, F.G. et al. Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma. Nature Genet. 3, 113–117 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Mitchell, C.D., Ventris, J.A., Warr, T.J. & Cowell, J.K. Molecular definition in a somatic cell hybrid of a specific 2:13 translocation breakpoint in childhood rhabdomyosarcoma. Oncogene 6, 89–92 (1991).

    CAS  PubMed  Google Scholar 

  7. Shapiro, D.N., Sublett, J.E., Li, B., Downing, J.R. & Naeve, C.W. Fusion of PAX3 to a member of the forkhead family of transcription factors in human alveolar rhabdomyosarcoma. Cancer Res. 53, 5108–5112 (1993).

    CAS  PubMed  Google Scholar 

  8. Davis, R.J., D'Cruz, C.M., Lovell, M.A., Biegel, J.A. & Barr, F.G. Fusion of PAX7 to FKHR by the variant t(1;13)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res. 54, 2869–2872 (1994).

    CAS  PubMed  Google Scholar 

  9. Bentley, N.J. et al. The Schizosaccharomyces pombe rad3 checkpoint gene. EMBO J. 15, 6641–6651 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sanchez, Y. et al. Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science 271, 357–360 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Hari, K.L. et al. The mei-41 gene of D. melanogaster is a structural and functional homolog of the human ataxia telangiectasia gene. Cell 82, 815–821 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Keegan, K.S. et al. The Atr and Atm protein kinases associate with different sites along meiotically pairing chromosomes. Genes Dev 10, 2423–2437 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Cimprich, K.A., Shin, T.B., Keith, C.T. & Schreiber, S.L. cDNA cloning and gene mapping of a candidate human cell cycle checkpoint protein. Proc. Natl. Acad. Sci. USA 93, 2850–2855 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fiddler, T.A., Smith, L., Tapscott, S.J. & Thayer, M.J. Amplification of MDM2 inhibits MyoD-mediated myogenesis. Mol. Cell. Biol. 16, 5048–5057 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fournier, R.E.K. A general high-efficiency procedure for production of microcell hybrids. Proc. Natl. Acad. Sci. USA 78, 6349–6353 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Peterson, C.A., Gordon, H., Hall, Z.W., Paterson, B.M. & Blau, H.M. Negative control of the helix-loop-helix family of myogenic regulators in the NFB mutant. Cell 62, 493–502 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Fukasawa, K., Choi, T., Kuriyama, R., Rulong, S. & Vande-Woude, G.F. Abnormal centrosome amplification in the absence of p53. Science 271, 1744–1747 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Hirano, T., Funahashi, S., Uemura, T. & Yanagida, M. Isolation and characterization of Schizosaccharomyces pombe cut mutants that block nuclear division but not cytokinesis. EMBO J. 5, 2973–2979 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maltzman, W. & L UV irradiation stimulates levels of p53 cellular tumour antigen in nontransformed mouse cells. Mol. Cell. Biol. 4, 1689–1694 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Barak, Y., Juven, T., Haffner, R. & Oren, M. mdm2 expression is induced by wild type p53 activity. EMBO J. 12, 461–468 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu, X., Bayle, J.H., Olson, D. & Levine, A.J. The p53-mdm-2 autoregulatory feedback loop. Genes Dev. 7, 1126–1132 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. el-Deiry, W.S. et al. WAF1, a potential mediator of p53 tumour suppression. Cell 75, 817–825 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Deng, C., Zhang, P., Harper, J.W., Elledge, S.J. & Leder, P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82, 675–684 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Donehower, L.A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Olson, E.N. Interplay between proliferation and differentiation within the myogenic lineage. Dev. Biol. 154, 261–272 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Lassar, A.B., Skapek, S.X. & Novitch, B. Regulatory mechanisms that coordinate skeletal muscle differentiation and cell cycle withdrawal. Curr. Opin. Cell Biol. 6, 788–794 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Benezra, R., Davis, R.L., Lockshon, D., Turner, D.L. & Weintraub, H. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61, 49–59 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Li, L. et al. FGF inactivates myogenic helix-loop-helix proteins through phosphorylation of a conserved protein kinase C site in their DNA-binding domains. Cell 71, 1181–1194 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Hardy, S., Kong, Y. & Konieczny, S.F. Fibroblast growth factor inhibits MRF4 activity independently of the phosphorylation status of a conserved threonine residue within the DNA-binding domain. Mol. Cell. Biol. 13, 5943–5956 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rao, S.S., Chu, C. & Kohtz, D.S. Ectopic expression of cyclin D1 prevents activation of gene transcription by myogenic basic helix-loop-helix regulators. Mol. Cell. Biol. 14, 5259–5267 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Skapek, S.X., Rhee, J., Spicer, D.B. & Lassar, A.B. Inhibition of myogenic differentiation in proliferating myoblasts by cyclin D1-dependent kinase. Science 267, 1022–1024 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Hawley, R.S. & Friend, S.H. Strange bedfellows in even stranger places: the role of ATM in meiotic cells, lymphocytes, tumours, and its functional links to p53. Genes Dev. 10, 2383–2388 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Hoekstra, M.F. Responses to DNA damage and regulation of cell cycle checkpoints by the ATM protein kinase family. Curr. Opin. Genet. Dev. 7, 170–175 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Carr, A.M. Control of cell cycle arrest by the Mec1sc/Rad3sp DNA structure checkpoint pathway. Curr. Opin. Genet. Dev. 7, 93–98 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Bishop, J.M. The molecular genetics of cancer. Science 235, 305–311 (1987).

    Article  CAS  PubMed  Google Scholar 

  36. Elledge, S.J. Cell cycle checkpoints: preventing an identity crisis. Science 274, 1664–1672 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Forozan, F., Karhu, R., Kononen, J., Kallioniemi, A. & Kallioniemi, O.P. Genome screening by comparative genomic hybridization. Trends Genet. 13, 405–409 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Weber-Hall, S. et al. Gains, losses, and amplification of genomic material in rhabdomyosarcoma analysed by comparative genomic hybridization. Cancer Res. 56, 3220–3224 (1996).

    CAS  PubMed  Google Scholar 

  39. Speicher, M.R. et al. Comparative genomic hybridization detects novel deletions and amplifications in head and neck squamous cell carcinomas. Cancer Res. 55, 1010–1013 (1995).

    CAS  PubMed  Google Scholar 

  40. Carey, T.E., Worsham, M.J. & Van-Dyke, D.L. Chromosomal biomarkers in the clonal evolution of head and neck squamous neoplasia. J. Cell. Biochem. Suppl. 213–222 (1993).

    Article  Google Scholar 

  41. Jin, Y. et al. Chromosome abnormalities in eighty-three head and neck squamous cell carcinomas: influence of culture conditions on karyotypic pattern. Cancer Res. 53, 2140–2146 (1993).

    CAS  PubMed  Google Scholar 

  42. Rao, P.H., Sreekantaiah, C., Schantz, S.P. & Chaganti, R.S. Cytogenetic analysis of 11 squamous cell carcinomas of the head and neck. Cancer Genet. Cytogenet. 77, 60–64 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Ried, T. et al. Mapping of multiple DNA gains and losses in primary small cell lung carcinomas by comparative genomic hybridization. Cancer Res. 54, 1801–1806 (1994).

    CAS  PubMed  Google Scholar 

  44. Rabbitts, P., Bergh, J., Douglas, J., Collins, F. & Waters, J. A submicroscopic homozygous deletion at the D3S3 locus in a cell line isolated from a small cell lung carcinoma. Genes Chromosom. Cancer 2, 231–238 (1990).

    Article  CAS  PubMed  Google Scholar 

  45. Heselmeyer, K. et al. Gain of chromosome 3q defines the transition from severe dysplasia to invasive carcinoma of the uterine cervix. Proc. Natl. Acad. Sci. USA 93, 479–484 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lengauer, C., Kinzler, K.W. & Vogelstein, B. Genetic instability in colorectal cancers. Nature 386, 623–627 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Lugo, T.G., Handelin, B., Killary, A.M., Housman, D.E. & Fournier, R.E. Isolation of microcell hybrid clones containing retroviral vector insertions into specific human chromosomes. Mol. Cell. Biol. 7, 2814–2820 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Favaloro, J., Freisman, R. & Kamen, R. Transcription maps of polyoma virus-specific RNA: analysis by two dimensional nuclease S1 gel mapping. Methods Enzymol. 65, 718–749 (1980).

    Article  CAS  PubMed  Google Scholar 

  49. Rupp, R.A. & Weintraub, H. Ubiquitous MyoD transcription at the midblastula transition precedes induction-dependent MyoD expression in presumptive mesoderm of X.laevis. Cell 65, 927–937 (1991).

    Article  CAS  PubMed  Google Scholar 

  50. Yunis, J.J. & Chandler, M.E. High-resolution chromosome analysis in clinical medicine. Prog. Clin. Pathol. 7, 267–288 (1978).

    CAS  PubMed  Google Scholar 

  51. Trask, B. & Pinkel, D. Flow cytometry (Academic Press, New York, 1990).

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathew J. Thayer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, L., Liu, S., Goodrich, L. et al. Duplication of ATR inhibits MyoD, induces aneuploidy and eliminates radiation-induced G1 arrest. Nat Genet 19, 39–46 (1998). https://doi.org/10.1038/ng0598-39

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0598-39

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing