Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

A new dimension for the human genome project: towards comprehensive expression maps

Abstract

The current Human Genome Project is largely devoted to structural characterisation of our genome. We now need international co-ordination of a second phase of genome analysis, the systematic construction of expression maps using both basic and high-resolution expression assays. Databases recording different types of expression pattern for a variety of human cell types need to be established and co-ordinated. There is a compelling need for a database of gene expression in early human development, but the scarcity of human material for study requires optimisation of research strategies and co-ordination of expression studies in early human and mouse development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Lander, E.S. The new genomics: global views of biology. Science. 274, 536–539 (1996).

    Article  CAS  Google Scholar 

  2. Fields, S. The future is function. Nature Genet. 15, 325–327 (1997).

    Article  CAS  Google Scholar 

  3. Goffeau, A. et al. Life with 6000 genes. Science 274, 546–567 (1996).

    Article  CAS  Google Scholar 

  4. Oliver, S. From DNA sequence to biological function. Nature 379, 597–600 (1996).

    Article  CAS  Google Scholar 

  5. Miklos, G.L.G. & Rubin, G.M. The role of the genome project in determining gene function: insights from model organisms. Cell 86, 521–529 (1996).

    Article  CAS  Google Scholar 

  6. Boguski, M.S. & Schuler, G.D. ESTablishing a human transcript map. Nature Genet. 10, 369–371 (1995).

    Article  CAS  Google Scholar 

  7. Schuler, G.D. et al. A gene map of the human genome. Science 274, 540–546 (1996).

    Article  CAS  Google Scholar 

  8. Database of Human Genes at http://www. imcb.osaka-u.ac.jp/bodymap.

  9. Bains, W. Virtually sequenced: the next generation. Nature Biotechnol. 14, 711–713 (1996).

    Article  CAS  Google Scholar 

  10. Anderson, N.G. & Anderson, N.L. Twenty two years of two-dimensional etectrophoresis: past, present and future. Electrophoresis 17, 443–453 (1996).

    Article  CAS  Google Scholar 

  11. Laing, P. & Pardee, A.B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 274–280 (1992).

    Google Scholar 

  12. Velculescu, V.E., Zhang, L., Vogelstein, B. & Kinzler, K.W. Serial analysis of gene expression. Science 270, 484–487 (1995).

    Article  CAS  Google Scholar 

  13. Adams, M.D. Serial analysis of gene expression: ESTs get smaller. Bioessays 18, 261–262 (1996).

    Article  CAS  Google Scholar 

  14. Schena, M., Shalon, D., Davis, R.W. & Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995).

    Article  CAS  Google Scholar 

  15. Schena, M. et al. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc. Natl. Acad. Sci. USA 93, 10614–10619 (1996).

    Article  CAS  Google Scholar 

  16. DeRisi, J. et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nature Genet. 14, 457–460 (1996).

    Article  CAS  Google Scholar 

  17. Schena, M. Genome analysis with gene expression microarrays. Bioessays 18, 427–431 (1996).

    Article  CAS  Google Scholar 

  18. Goffeau, A. Molecular fish on chips. Nature 385, 202–203 (1997).

    Article  CAS  Google Scholar 

  19. Lockhart, D. et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnol. 14, 1675–1680 (1996).

    Article  CAS  Google Scholar 

  20. To affinity… and beyond. Nature Genet. 14, 367–370 (1996).

  21. Maillet, I., Lagniel, G., Perrot, M., Boucherie, H. & Labarre, J. Rapid identification of yeast proteins on 2-dimensional gels. J. Biol. Chem. 271, 10263–10270 (1996).

    Article  CAS  Google Scholar 

  22. Chait, B.T. Trawling for proteins in the post-genome era. Nature Biotechnol. 14, 1544 (1996).

    Article  CAS  Google Scholar 

  23. Ringwald, M. et al. A database for mouse development. Science 265, 2033–2034 (1994).

    Article  CAS  Google Scholar 

  24. Davidson, D., Baldock, R. & Bard, J. A 3-D atlas and gene expression database of mouse development: implications for a database of human development.In Molecular Genetics of Early Human Development(eds Strachan, T., Lindsay, S., Wilson, D.) (BIOS Scientific Publishers Ltd., Oxford, in the press).

  25. Davidson, D. et al. Gene expression databases. In In situ Hybridization. A Practical Approach(ed. D. Wilkinson) (Oxford University Press, Oxford, in the press).

  26. Appel, R.D. et al. Federated 2-dimensional electrophoresis database - simple means of publishing 2-dimensional electrophoresis data. Electrophoresis 17, 540–546 (1996).

    Article  CAS  Google Scholar 

  27. http://expasy.hcuge.ch/ch2d/2d-index.html

  28. Kuska, B. Cancer Genome Anatomy Project set to take off. J. Natl. Cancer Inst. 88, 1801–1803 (1996).

    Article  CAS  Google Scholar 

  29. Nelson, N. Microarrays pave the way to 21st century medicine. J. Natl. Cancer Inst. 88, 1803–1805 (1996).

    Article  CAS  Google Scholar 

  30. Burn, J. & Strachan, T. Human embryo use in developmental research. Nature Genet. 11, 3–6 (1995).

    Article  CAS  Google Scholar 

  31. O'Rahilly, R. & Muller, F. Developmental stages in human embryos. Carnegie Institution of Washington, publication 637 (1987).

  32. http://magenta.afip.mil/embryo

  33. http://www.civm.mc.duke.edu/civmPeople/SmithBR/documents/HumanEmbryo. html

  34. http://www,st-and.ac.uk/www_sbms/terrapin/frontpage.html

  35. http://www.ncsa.uiuc.edu/evl/SHOWCASE/cheong/embryo.html

  36. Verbeek, F.J., Huijsmans, D.P., Baeten, R.J.A.M., Schoutsen, N.J.C. & Lamers, W.H. Design and implementation of a database and program for 3D reconstruction from serial sections: a data-driven approach. Microscopy Res. Tech. 30, 496–512 (1995).

    Article  CAS  Google Scholar 

  37. Machin, G.A. Computerized graphic imaging for three-dimensional representation: general principles and application to embryo/fetal development. Int. Rev. Exp. Pathol. 36, 1–30 (1996).

    CAS  PubMed  Google Scholar 

  38. Shiota, K., Nakatsu, T. & Ire, H. Computerised three-dimensional reconstruction of the brain of normal and holoprosencephalic human embryos. Birth Defects: Original Article Series 29, 261–271 (1993).

    CAS  Google Scholar 

  39. Weil, D. et al. Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature 374, 60–61 (1995).

    Article  CAS  Google Scholar 

  40. Gibson, F. et al. A type VII myosin encoded by the mouse deafness gene shaker-1. Nature 374, 62–64 (1995).

    Article  CAS  Google Scholar 

  41. EI-Amraoui, A. et al. Human usher IB/mouse shaker-1: the retinal phenotype discrepancy explained by the presence/absence of mysoin VIIA in the photoreceptor cells. Hum. Molec. Genet. 5, 1171–1178 (1996).

    Article  Google Scholar 

  42. Wang, D., Marsh, J.L. & Ayala, F.J. Evolutionary changes in the expression pattern of a developmentally essential gene in three Drosophila species. Proc. Natl. Acad. Sci. 93, 7103–7107 (1996).

    Article  CAS  Google Scholar 

  43. Li, X. & Noll, M. Evolution of distinct developmental functions by three Drosophila genes by acquisition of different cis-regulatory regions. Nature 367, 83–87 (1994).

    Article  CAS  Google Scholar 

  44. Strachan, T. & Lindsay, S. Why study human embryos: the imperfect mouse model. In Molecular Genetics of Early Human Development(eds Strachan, T., Lindsay, S., Wilson, D.). (BIOS Scientific Publishers Ltd., Oxford, in the press).

  45. Li, Q.Y. et al. Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury(T) gene family. Nature Genet. 15, 21–29 (1997).

    Article  Google Scholar 

  46. Bennett, R. & Harris, J. The ethics of human embryo studies. In Molecular Genetics of Early Human Development(eds Strachan, T, Lindsay, S. & Wilson, D.I.) (BIOS Scientific Publishers Ltd., Oxford, in the press).

  47. Baldock, R., Bard, J., Kaufman, M. & Davidson, D. A real mouse for your computer. Bioessays 14, 501–502 (1992).

    Article  CAS  Google Scholar 

  48. Abitbol, M. et al. Nucleus basalis magnocellularis and hippocampus are the major sites of FMR-1 expression in the human fetal brain. Nature Genet. 4, 147–153 (1993).

    Article  CAS  Google Scholar 

  49. Bullen, P., Wilson, D., Lindsay, S., Robson, S.C. & Strachan, T. Carnegie system for staging human embryos: a photo-essay. In Molecular Genetics of Early Human Development (eds. Strachan T, Lindsay S, Wilson D). (BIOS Scientific Publishers Ltd., Oxford, in the press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tom Strachan or Jacques S. Beckmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strachan, T., Abitbol, M., Davidson, D. et al. A new dimension for the human genome project: towards comprehensive expression maps. Nat Genet 16, 126–132 (1997). https://doi.org/10.1038/ng0697-126

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0697-126

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing