Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT

Abstract

Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant, neurodegenerative disorder that affects the cerebellum and other areas of the central nervous system. We have devised a novel strategy, the direct identification of repeat expansion and cloning technique (DIRECT), which allows selective detection of expanded GAG repeats and cloning of the genes involved. By applying DIRECT, we identified an expanded CAG repeat of the gene for SCA2. CAG repeats of normal alleles range in size from 15 to 24 repeat units, while those of SCA2 chromosomes are expanded to 35 to 59 repeat units. The SCA2 cDNA is predicted to code for 1,313 amino acids — with the CAG repeats coding for a polyglutamine tract. DIRECT is a robust strategy for identification of pathologically expanded trinucleotide repeats and will dramatically accelerate the search for causative genes of neuropsychiatric diseases caused by trinucleotide repeat expansions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. La Spada, A.R., Wilson, E.M., Lubahn, D.D., Harding, A.E. & fischbeck, K.H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991).

    Article  CAS  Google Scholar 

  2. The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72, 971–983 (1993).

    Article  Google Scholar 

  3. Orr, H.T. et al. Expansion of an unstable trinucleotide CAG repeat in spinoeerebellar ataxia type 1. Nature Genet. 4, 221–226 (1993).

    Article  CAS  Google Scholar 

  4. Koide, R. et al. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nature Genet. 6, 9–13 (1994).

    Article  CAS  Google Scholar 

  5. Nagafuchi, S. et al. Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nature Genet. 6, 14–18 (1994).

    Article  CAS  Google Scholar 

  6. Kawaguchi, Y et al. CAG expansion in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nature Genet. 8, 221–228 (1994).

    Article  CAS  Google Scholar 

  7. Gispert, S. et al. Chromosomal assignment of the second locus for autosomal dominant cerebellar ataxia (SCA2) to chromosome 12q23–24.1. Nature Genet. 4, 295–299 (1993).

    Article  CAS  Google Scholar 

  8. Pulst, S.M., Nechiporuk, A. & Starkman, S. Anticipation in spinoeerebellar ataxia type 2. Nature Genet. 5, 8–10 (1993).

    Article  CAS  Google Scholar 

  9. Basset, A.S. & Honer, W.G. Evidence for anticipation in schizophrenia. Am. J. Hum. Genet 54, 864–870 (1994).

    Google Scholar 

  10. Mclnnis, M.G. et al. Anticipation in bipolar affective disorder. Am. J. Hum. Genet. 53, 385–390 (1993).

    Google Scholar 

  11. Ranum, L.P.W., Schut, L.J., Lundgren, J.K., Orr, H.T. & Livingston, D.M. Spinoeerebellar ataxia type 5 in a family descended from the grandparents of President Lincoln maps to chromosome 11. Nature Genet. 8, 280–284 (1994).

    Article  CAS  Google Scholar 

  12. Gouw, L.G., Digre, K.B., Harris, C.P., Haines, J.H. & Ptacek, L.J. Autosomal dominant cerebellar ataxia with retinal degeneration. Neurology 44, 1441–1447 (1994).

    Article  CAS  Google Scholar 

  13. Sanpei, K., Igarasni, S., Eguchi, I., Takiyama, Y., Tanaka, H., Tsuji, S. Direct detection of expanded (CAG/CTG) repeats in the myotonin-protein kinase genes of myotonic dystrophy patients using a high-stringency hybridization method. Biochem. Biophys. Res. Commun. 212, 341–346 (1995).

    Article  CAS  Google Scholar 

  14. Saiki, R.K. et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491 (1988).

    Article  CAS  Google Scholar 

  15. Onodera, O. et al. Molecular cloning of a full-length cDNA for dentatorubral-pallidoluysian atrophy and regional expressions of the expanded alleles in the CNS. Am. J. Hum. Genet. 57, 1050–1060 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Trottier, Y. et al. Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxia. Nature 378, 403–406 (1995).

    Article  CAS  Google Scholar 

  17. Ihara, T. et al. Genetic heterogeneity of dominantly inherited olivopontocerebellar atrophy (OPCA) in the Japanese: linkage study of two pedigrees and evidence for the disease locus on chromosome 12q (SCA2). Jpn. J. Hum. Genet. 39, 305–313 (1994).

    Article  CAS  Google Scholar 

  18. Cox, D.R., Burmeister, M., Price, E.R., Kim, S. & Myers, R.M. Radiation hybrid mapping: a somatic cell genetic method for constructing high-resolution maps of mammalian chromosomes. Science 250, 245–250 (1990).

    Article  CAS  Google Scholar 

  19. Chung, M.-Y. et al. Evidence for a mechanism predisposing to inteigenerational CAG repeat instability in spinoeerebellar ataxia type I. Nature Genet. 5, 254–258 (1993).

    Article  CAS  Google Scholar 

  20. Pulst, S.M. et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinoeerebellar ataxi type 2. Nature Genet. 14, 269–276 (1996).

    Article  CAS  Google Scholar 

  21. Kozak, M. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucl. Acids Res. 15, 8125–8148 (1987).

    Article  CAS  Google Scholar 

  22. Imbert, G. et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats and high instability. Nature Genet. 14, 285–291 (1996).

    Article  CAS  Google Scholar 

  23. Yuan, J.-Y. et al. The C elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1β-converting enzyme. Cell 75, 641–652 (1993).

    Article  CAS  Google Scholar 

  24. Nicholson, D.W. et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammmalian apoptosis. Nature 376, 37–43 (1995).

    Article  CAS  Google Scholar 

  25. Goldberg, Y.P. et al. Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nature Genet. 13, 442–449 (1996).

    Article  CAS  Google Scholar 

  26. Barr, P.J. Mammalian subtilisins: the long-sought dibasic processing endonucleases. Cell 66, 1–3 (1991).

    Article  CAS  Google Scholar 

  27. Ikeda, H. et al. Expanded polyglutamine in the Machado-Joseph disease protein induces cell death in vitro and in vivo. Nature Genet. 13, 196–202 (1996).

    Article  CAS  Google Scholar 

  28. Schalling, M., Hudson, T.J., Buetow, K.H. & Housman, D.E. Direct detection of novel expanded trinucleotide repeats in the human genome. Nature Genet. 4, 135–139 (1993).

    Article  CAS  Google Scholar 

  29. Takano, H. et al. Somatic mosaicism of expanded CAG repeats in brains of patients with dentatorubral-pallidoluysian atrophy: Cellular population-dependent dynamics of mftotic Instability. Am. J. Hum. Genet. 58, 1212–1222 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wahl, G.M., Stem, M. & Stark, G.R. Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxy-methyl-paper and rapid hybridization by using dextran sulfate. Proc. Watt Acad Sci. USA 76, 3683–3687 (1979).

    Article  CAS  Google Scholar 

  31. Feinberg, A.P. & Vogelstein, B.A. A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132, 6–13 (1983).

    Article  CAS  Google Scholar 

  32. Tsuji, S. et al. Genetic heterogeneity in type 1 Gaucher disease: Multiple genotypes in Ashkenazic and non-Ashkenazic individuals. Proc. Nati. Acad. Sci. USA 85, 2349–2352 (1988).

    Article  CAS  Google Scholar 

  33. Kang, S., Jaworski, A., Ohshima, K. & Wells, R.D. Expansion and deletion of CTG repeats from human disease gene are determined by the direction of replication in E. coli.. Nature Genet. 10, 213–218 (1995).

    Article  CAS  Google Scholar 

  34. Frohman, M.A., Dush, M.K. & Martin, G.R. Rapid production of full-length cDNAs from rare transcripts: Amplification using a single gene-specific oligonucleotide primer. Proc. Nati. Acad. Sci. USA 85, 8998–9002 (1988).

    Article  CAS  Google Scholar 

  35. Chinjwin, J.M., Przbyla, A.E., MacDonald, R.J. & Rutter, W.J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294–5299 (1979).

    Article  Google Scholar 

  36. Sanger, F., Nicklen, S. & Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467 (1977).

    Article  CAS  Google Scholar 

  37. Chen, E.Y. & Seeburg, P.H. Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA 4, 165–170 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanpei, K., Takano, H., Igarashi, S. et al. Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet 14, 277–284 (1996). https://doi.org/10.1038/ng1196-277

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1196-277

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing