Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Expanded polyglutamine in the Machado–Joseph disease protein induces cell death in vitro and in vivo

Abstract

Recently, we identified a novel gene, MJD1, which contains an expanded GAG triplet repeat in Machado–Joseph disease. Here we report the induction of apoptosis in cultured cells expressing a portion of the MJD1 gene that includes the expanded GAG repeats. Cell death occurs only when the GAG repeat is translated into polyglutamine residues, which apparently precipitate in large covalently modified forms. We also created ataxic transgenic mice by expressing the expanded polyglutamine stretch in Purkinje cells. Our results demonstrate the potential involvement of the expanded polyglutamine as the common aetiological agent for inherited neurodegenerative diseases with GAG expansions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kawaguchi, Y. et al. GAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nature Genet. 8, 221–228 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. La Spada, A.R., Wilson, E.M., Lubahn, D.B., Harding, A.E. & Fischbeck, K.H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72, 971–983 (1993).

    Article  Google Scholar 

  4. Orr, H.T. et al. Expansion of an unstable trinucleotide GAG repeat in spinocerebellar ataxia type 1. Nature Genet. 4, 221–226 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Koide, R. et al. Unstable expansion of GAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nature Genet. 6, 9–13 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Nagafuchi, S. et al. Dentatorubral and pallidoluysian atrophy expansion of an unstable GAG trinucleotide on chromosome 12p. Nature Genet. 6, 14–18 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Willems, R.J. Dynamic mutations hit double figures. Nature Genet 8, 213–215 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Housman, D. Gain of glutamines, gain of function? Nature Genet. 10, 3–4 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Maruyama, H. et al. Molecular features of the GAG repeats and clinical manifestation of Machado-Joseph disease. Hum. Mol. Genet. 4, 807–812 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Trottier, Y. et al. Cellular localization of the Huntington's disease protein and discrimination of the normal and mutated form. Nature Genet. 10, 104–110 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Sharp, A.H. et al. Widespread expression of Huntington's disease gene (IT15) protein product. Neuron 14, 1065–1074 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Servadio, A. et al. Expression analysis of the ataxin-1 protein in tissues from normal and spinocerebellar ataxia type 1 individuals. Nature Genet. 10, 94–98 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Yazawa, I. et al. Abnormal gene product identified in hereditary dentatorubral-pallidoluysian atrophy (DRPLA) brain. Nature Genet. 10, 99–103 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Trottier, Y. et al. Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias. Nature 378, 403–405 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Burright, E.N. et al. SCA1 transgenic mice: a model for neuro-degeneration caused by an expanded CAG trinucleotide repeat. Cell 82, 937–948 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Yonehara, S., Ishii, A. & Yonehara, M. A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J. Exp. Med. 169, 1747–1756 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Itoh, N. et al. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66, 233–243 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Saitou, M., Narumiya, S. & Kakizuka, A. Alteration of a single amino acid residue in retinoic acid receptor causes dominant-negative phenotype. J. Bid. Chem. 269, 19101–19107 (1994).

    CAS  Google Scholar 

  19. Kawakami, H. et al. Unique features of the CAG repeats in Machado-Joseph disease. Nature Genet. 9, 344–345 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Takiyama, Y. et al. Evidence for inter-generational instability in the CAG repeat in the MJD1 gene and for conserved haplotypes at flanking markers amongst Japanese and Caucasian subjects with Machado-Joseph disease. Hum. Mol. Genet. 4, 1137–1146 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Oberdick, J., Levinthal, F. & Levinthal, C. A Purkinje cell differentiation marker shows a partial DNA sequence homology to the cellular SiS/PDGF2 gene. Neuron 1, 367–376 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Smeyne, R.J. et al. Dynamic organization of developing Purkinje cells revealed by transgene expression. Science 254, 719–721 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Bingham, P.M. et al. Stability of an expanded trinucleotide repeat in the androgen receptor gene in transgenic mice. Nature Genet 9, 191–196 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Eadie, M.J. Cerebello-olivary atrophy (Holmes type). in Handbook of Clinical Neurology, vol. 20 (eds Vinken, RJ. & Bruyn, G.W.) 403–413 (Amsterdam: North-Holland Publishing Company, 1975).

    Google Scholar 

  25. Ross, C.A. When more is less: pathogenesis of glutamine repeat neurodegenerative diseases. Neuron 15, 493–496 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Citron, M., Teplow, D.B. & Selkoe, D.J. Generation of amyloid β protein from its precursor is sequence specific. Neuron 14, 661–670 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Glenner, G.G. & Wong, C.W. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120, 885–890 (1984).

    Article  CAS  PubMed  Google Scholar 

  28. Goldgaber, D. et al. Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer's disease. Science 235, 877–880 (1987).

    Article  CAS  PubMed  Google Scholar 

  29. Kang, J. et al. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 325, 733–736 (1987).

    Article  CAS  PubMed  Google Scholar 

  30. Alzheimer, A. Über eine eigenatige Erkrankung der Hirnrinde. Zbl Nervenheik 30, 177–179 (1907).

    Google Scholar 

  31. Mayeux, R. & Chun, M.R. Acquired and hereditary dementias. in Merritt's Textbook of Neurology, 9th edn. (ed. Rowland, L.R) (Baltimore: Williams &Wilkins, 1995).

    Google Scholar 

  32. Green, H. Human genetic diseases due to codon reiteration: relationship to an evolutionary mechanism. Cell 74, 955–956 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Chou, P.Y. & Fasman, G.D. Prediction of the secondary structure of proteins from their amino acid sequence. Adv. Enzymol. 47, 45–148 (1978).

    CAS  PubMed  Google Scholar 

  34. Perutz, M.F., Johnson, T., Suzuki, M. & Finch, J.T. Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc. Natl. Acad. Sci. USA 91, 5355–5358 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Prusiner, S.B. & Hsiao, K.K. Human prion diseases. Ann. Neurol. 35, 385–395 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Pan, K.-M. et al. Conversion of a-helices into (β-sheets features in the formation of the scrapie prion proteins. Proc. Natl. Acad. Sci. USA 90, 10962–10966 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kakizuka, A. et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARα with a novel putative transcription factor, PML. Cell 66, 663–674 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Umesono, K., Murakami, K.K., Thompson, C.C. & Evans, R.M. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell 65, 1255–1266 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kozak, M. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucl. Acids Res. 15, 8125–8148 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Field, J. et al. Purification of a RAS-responsive adenylyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method. Mol. Cell. Biol. 8, 2159–2165 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kakizuka, A., Kitamura, N. & Nakanishi, S. Localization of DNA sequences governing alternative mRNA production of rat kininogen genes. J. Biol. Chem. 263, 3884–3892 (1988).

    CAS  PubMed  Google Scholar 

  42. Kakizuka, A., Ingi, T., Murai, T. & Nakanishi, S. A set of U1 snRNA-complementary sequences involved in governing alternative RNA splicing of the kininogen genes. J. Biol. Chem. 265, 10102–10108 (1990).

    CAS  PubMed  Google Scholar 

  43. Yamaguchi, M. et al. Down-regulation of interleukin 6 receptors of mouse myelomonocytic leukemic cells by leukemia inhibitory factor. J. Biol. Chem. 267, 22035–22042 (1992).

    CAS  PubMed  Google Scholar 

  44. Sanes, J.R., Rubenstein, J.L.R. & Nicolas, J.-F. Use of a recombinant retrovirus to study post-implantation cell lineage in mouse embryos. EMBO J. 5, 3133–3142 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Saitou, M. et al. Inhibition of skin development by targeted expression of a dominant-negative retinoic acid receptor. Nature 374, 159–162 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Mizushima, S. & Nagata, S. pEF-BOS, a powerful mammalian expression vector. Nucl. Acids Res. 18, 5322 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dyck, J.A. et al. A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell 76, 333–343 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Ishida, Y., Agata, Y., Shibahara, K. & Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 11, 3887–3895 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rösl, F. A simple and rapid method for detection of apoptosis in human cells.Nucl. Acids Res. 20, 5243 (1992).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Vandaele, S. et al. Purkinje cell protein-2 regulatory regions and transgene expression in cerebellar compartments. Genes Dev. 5, 1136–1148 (1991).

    Article  CAS  PubMed  Google Scholar 

  51. Kakizuka, A. et al. A mouse cdc25 homolog is differentially and developmental expressed. Genes Dev. 6, 578–590 (1992).

    Article  CAS  PubMed  Google Scholar 

  52. Gordon, J.W. Production of transgenic mice. in Guide to Techniques in Mouse Development (eds Wassarman, P. M. & DePamphilis, M.L.) 747–771 (San Diego: Academic, 1993).

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikeda, H., Yamaguchi, M., Sugai, S. et al. Expanded polyglutamine in the Machado–Joseph disease protein induces cell death in vitro and in vivo. Nat Genet 13, 196–202 (1996). https://doi.org/10.1038/ng0696-196

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0696-196

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing