Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nf1 deficiency causes Ras-Dediated granulocyte/macrophage colony stimulating factor hypersensitivity and chronic myeloid leukaemia

Abstract

The Ras signal transduction pathway is often deregulated in human myeloid leukaemia. For example, activating point mutations in RAS genes are found in some patients with juvenile chronic myelogenous leukaemia (JCML), while other patients with JCML show loss of the neurofibromatosis type 1 (NF1) gene, a Ras GTPase activating protein. By generating mice whose haematopoietic system is reconsituted with NF1 deficient haematopoietic stem cells we show that NF1 gene loss, by itself, is sufficient to produce the myeloproliferative symptoms associated with human JCML. We also provide evidence to indicate that NF1 gene loss induces myeloproliferative disease through a Ras-mediated hypersensitivity to granulocyte/macrophage-colony stimulating factor (GM-CSF). Finally, we describe a genetic screen for identifying genes that cooperate with NF1 gene loss during progression to acute myeloid leukaemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Riccardi, V.M. In Neurofibromatosis: phenotype, natural history, and pathogenesis. (Johns Hopkins Press, Baltimore, 1992).

    Google Scholar 

  2. Bader, J.L. Neurofibromatosis and cancer. Ann. N. Y. Acad. Sci. 486, 56–65 (1986).

    Article  Google Scholar 

  3. Hope, D.G. & Mulvihill, J.J. Malignancy in neunofibromatosis. Adv. Neurol. 29, 33–56 (1981).

    CAS  PubMed  Google Scholar 

  4. Bader, J.L. & Miller, R.W. Neurofibromatosis and childhood leukemia. J. Pediat. 92, 925–929 (1978).

    Article  CAS  PubMed  Google Scholar 

  5. Gutmann, D.H. & Collins, F.S. The neurofibromatosis type 1 gene and its protein product, neurofibromin. Neuron 10, 335–343 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Barbacid, M. Ras oncogenes: their role in neoplasia. Eur. J. Clin. Invest. 20, 225–235 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Johnson, M.R., Look, A.T., DeClue, J.E., Valentine, M.B. & Lowy, D.R. Inactivation of the NF1 gene in human melanoma and neuroblastoma cell lines without impaired regulation of GTP–Ras. Proc. Natl. Acad. Sci. USA 90, 5539–5543 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Johnson, M.R. et al. Neurofibromin can inhibit ras-dependent growth by a mechanism independent of its GTPase-accelerating function. Molec. cell. Biol. 14, 641–645 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shannon, K.M. et al. Loss of the normal NF1 allele from the bone marrow of children with type 1 neurofibromatosis and malignant myeloid disorders. New Engl. J. Med. 330, 597–601 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Jacks, T. et al. Tumor predisposition in mice heterozygous for a targeted mutation in Nf1. Nature Genet. 7, 353–361 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Buchberg, A.M., Bedigian, H.G., Jenkins, N.A. & Copeland, N.G., Evi-2, a common integration site involved in murine myeloid leukemogenesis. Molec. Cell. Biol. 10, 4658–4666 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Largaespada, D.A., Shaughnessy, J.D., Jenkins, N.A. & Copeland, N.G. Retroviral insertion at the Evi-2 locus in BXH-2 myeloid leukemia cell lines disrupts Nf1 expression without changes in steady state ras-GTP levels. J. Virol. 69, 5095–5102 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kalra, R., Paderanga, D.C., Olson, K. & Shannon, K.M. Genetic analysis is consistent with the hypothesis that NF1 limits myeloid growth through p21 ras. Blood 84, 3435–3439 (1994).

    CAS  PubMed  Google Scholar 

  14. Brannan, C.I. et al. Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev. 8, 1019–1029 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Moore, M.A.S., McNeill, T.A. & Haskill, J.S. Density distribution analysis of in vivo and in vitro colony forming cells in developing fetal liver. J. Cell. Physiol. 75, 181–192 (1970).

    Article  CAS  PubMed  Google Scholar 

  16. Dunn, A.R. et al. In Biological characterization of regulators encoded by cloned hemopoietic growth factor gene sequences. (Cold Spring Harbor Laboratory, New York, 1985).

  17. Emanuel, P.O., Bates, L.J., Castleberry, R.B., Gualtieri, R.J. & Zuckerman, K.S. Selective hypersensitivity to granulaocyte-macrophage colony-stimulating factor by juvenile chronic myeloid leukemia hematopoietic progenitors. Blood 77, 925–929 (1991).

    CAS  PubMed  Google Scholar 

  18. Miyajima, A., Mui, A.L., Ogorochi, T. & Sakamaki, K. Receptors for granulocyte-macrophage colony-stimulating factor, interleukin-3, and interleukin-5. Blood 82, 1960–1974 (1993).

    CAS  PubMed  Google Scholar 

  19. Castro-Malaspina, H. et al.Subacute and chronic myelomonocytic leukemia in children (Juvenile CML): Clinical and hematologic observations, and identification of prognostic factors. Cancer 54, 675–686 (1984).

    Article  CAS  PubMed  Google Scholar 

  20. Hestdal, K. et al. Characterization and regulation of RB6-8C5 antigen expression on murine bone marrow cells. J. Immunol. 147, 22–28 (1991).

    CAS  PubMed  Google Scholar 

  21. Lang, R.A. et al. Transgenic mice expressing a hemopoietic growth factor gene (GM-CSF) develop accumulations of macrophages, blindness, and a fatal syndrome of tissue damage. Cell 51, 675–686 (1987).

    Article  CAS  PubMed  Google Scholar 

  22. Johnson, G.R., Gonda, T.J., Metcalf, D., Hariharan, I.K. & Cory, S. A lethal myeloproliferative syndrome in mice transplanted with bone marrow cells infected with a retrovirus expressing granulocyte-macrophage colony stimulating factor. EMBO J. 8, 441–448 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Satoh, I., Nakafuku, M., Miyajima, A. & Kaziro, Y. Involvement of ras p21 protein in signal-transduction pathways from interleukin 2, interleukin 3, and granulocyte/macrophage colony-stimulating factor, but not from interleukin 4. Proc. Natl. Acad. Sci. USA 88, 3314–3318 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. DeClue, J.E. et al. Abnormal regulation of mammalian p21 ras contrinutes to malignant tumor growth in von Recklinghausen (Type 1)neurofibromatosis. Cell 69, 265–273 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Basu, T.N. et al. Aberrant regulation of ras proteins in malignant tumor cells from type 1 neurofibromatosis patients. Nature 356, 713–715 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Gonda, T.J., E.M., Macmillan, Townsend, P.V. & Hapel, A.J. Differentiation state and responses to hematopoietic growth factors of murine myeloid cells transformed by myb. Blood 82, 2813–2822 (1993).

    CAS  PubMed  Google Scholar 

  27. Gonda, T.J. Molecular and cellular activities of Myb: regulation in normal hemopoiesis and transformation. Seminars in virology 2, 351–361 (1991).

    CAS  Google Scholar 

  28. Janssen, J.W.G. et al. RAS gene mutations in acute and chronic myelocytic leukemias, chronic myeloproliferative disorders, and myelodysplastic syndromes. Proc. Natl. Acad. Sci. USA 84, 9228–9232 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. The, I. et al. Neurofibromatosis type 1 gene mutations in neuroblastoma. Nature Genet. 3, 62–66 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Bedigian, H.G., Johnson, D.A., Jenkins, N.A., Copeland, N.G. & Evans, R. Spontaneous and induced leukemias of myeloid origin in recombinant inbred BXH–2 mice. J. Virol. 51, 586–594 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Jenkins, N.A., Copeland, N.G., Taylor, B.A., Bedigian, H.G. & Lee, B.K. Ecotropic murine leukemia virus DNA content of normal and lymphomatous tissues of BXH–2 recombinant inbred mice. J. Virol. 42, 379–388 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. von Lohuizen, M. & Berns, A. Tumorigenesis by slow transforming retroviruses—an update. Biochim. Biophys. Acta. 1032 (2–3), 213–235 (1990).

    Google Scholar 

  33. Peters, G. Oncogenes at viral integration sites. Cell. Growth Differ. 1, 503–510 (1990).

    CAS  PubMed  Google Scholar 

  34. Puil, L. et al. Bcr-abl oncoproteins bind directly to activators of the ras signalling pathway. EMBO J. 13, 764–773 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pendergast, A.M. et al. BCR-ABL-induced oncogenesis is mediated by direct interaction of the SH2 domain of the GRB-2 adaptor protein. Cell 75, 175–185 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Largaespada, D., Brannan, C., Jenkins, N. et al. Nf1 deficiency causes Ras-Dediated granulocyte/macrophage colony stimulating factor hypersensitivity and chronic myeloid leukaemia. Nat Genet 12, 137–143 (1996). https://doi.org/10.1038/ng0296-137

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0296-137

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing