Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An integrated metric physical map of human chromosome 19

Abstract

A metric physical map of human chromosome 19 has been generated. The foundation of the map is sets of overlapping cosmids (contigs) generated by automated fingerprinting spanning over 95% of the euchromatin, about 50 megabases (Mb). Distances between selected cosmid clones were estimated using fluorescence in situ hybridization in sperm pronuclei, providing both order and distance between contigs. An average inter–marker separation of 230 kb has been obtained across the non–centromeric portion of the chromosome. Various types of larger insert clones were used to span gaps between contigs. Currently, the map consists of 51 ‘islands’ containing multiple clone types, whose size, order and relative distance are known. Over 450 genes, genetic markers, sequence tagged sites (STSs), anonymous cDNAs, and other markers have been localized. In addition, EcoRI restriction maps have been generated for >41 Mb (83%) of the chromosome.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cohen, D., Chumakov, I. & Weissenbach, J.A. 1st-generation physical map of the human genome. Nature 366, 698–701 (1992).

    Article  Google Scholar 

  2. Chumakov, I. et al. Continuum of overlapping clones spanning the entire human chromosome 21q. Nature 359, 380–387 (1992).

    Article  CAS  Google Scholar 

  3. Foote, S., Vollrath, D., Hilton, A. & Page, D.C. The human Y chromosome overlapping DMA clones spanning the euchromatic region. Science 258, 60–66 (1992).

    Article  CAS  Google Scholar 

  4. Olson, M.V. & Green, P.A. Criterion for the completeness of large scale physical maps of DNA. Cold Spring Harb. Symp. Quant Biol. 58, 349–355 (1993).

    Article  CAS  Google Scholar 

  5. Mayall, B.H. et al. The DMA-based human karyotype. Cytometry 5, 376–385 (1984).

    Article  CAS  Google Scholar 

  6. Larsen, F., Gunderson, G., Lopez, R. & Prydz, H. CpG islands as gene markers for the human genome. Genomics 13, 1095–1107 (1992).

    Article  CAS  Google Scholar 

  7. Genome Date Base, GDB. The Human Genome Data Base Project, Johns Hopkins University, Baltimore, MD. World Wide Web URL: http://gdbwww.gdb.org/ gdbdoc/topq.html, data as of June 23, 1995 at 2:30 pm EDT. (1995).

  8. Lamerdin, J.E. et al. Genomic sequence comparison of the human and mouse XRCC1 DNA repair gene regions. Genomics 25, 547–554 (1995).

    Article  CAS  Google Scholar 

  9. Martin-Gallardo, A. et al. Automated DNA sequencing and analysis of 106 kilobases from human chromosome 19q13.3. Nature Genet. 1, 34–39 (1992).

    Article  CAS  Google Scholar 

  10. Weber, C.A., Salazar, E.P., Stewart, S.A. & Thompson, L.H. ERCC2: cDNA cloning and molecular characterization of a human nucleotide excision repair gene with high homology to yeast RAD3. EMBO J. 9, 1437–1447 (1990).

    Article  CAS  Google Scholar 

  11. Hoffman, S.M.G., Fernadez-Salguero, P., Gonzalez, F.J. & Mohrenweiser, H.W. Organization and evolution of the CYP–2A–2B–2F subfamily gene cluster on human chromosome 19. J. molec. Evol. 41, (in the press).

  12. Aslanidis, C. et al. Cloning of the essential myotonic dystrophy region and mapping of the putative defect. Nature 355, 548–551 (1992).

    Article  CAS  Google Scholar 

  13. Joutel, A. et al. A gene for familial hemiplegic migraine maps to chromosome 19. Nature Genet. 5, 40–45 (1993).

    Article  CAS  Google Scholar 

  14. Strittmatter, W.J. & Roses, A.D. Apolipoprotein E and Alzheimer disease. Proc. natn. Acad. Sci. U.S.A. 92, 4725–4727 (1995).

    Article  CAS  Google Scholar 

  15. Korenberg, J.R. & Rykowski, M.C. Human genome organization: Alus, Lines and the molecular structure of metaphase chromosome bands. Cell 53, 391–400 (1988).

    Article  CAS  Google Scholar 

  16. Brandriff, B.F., Gordon, L.A. & Trask, B.J. A new system for high-resolution DNA sequence mapping in interphase pronuclei. Genomics 10, 75–82 (1991).

    Article  CAS  Google Scholar 

  17. Lamerdin, J.E. & Carrano, A.V. Automated fluorescence-based restriction fragment analysis. BioTechniques 15, 294–302 (1993).

    CAS  PubMed  Google Scholar 

  18. Brandriff, B.F. et al. Human chromosome 19p: A fluorescence in situ hybridization map with genomic distance estimates for 79 intervals spanning 20 Mb. Genomics 23, 582–591 (1994).

    Article  CAS  Google Scholar 

  19. Gordon, L. et al. A 30-Mb metric fluorescence in situhybridization map for human chromosome 19q. Genomics (in the press).

  20. Bellefroid, E.J. et al Clustered organization of homologous KRAB zinc-finger genes with enhanced expression in human T lymphoid cells. J. biol. Chem. 266, 1363–1374 (1993).

    Google Scholar 

  21. Hromas, R. et al A retinoic acid-responsive human zinc finger gene, MZF-1, preferentially expressed in myeloid cells. J. biol. Chem. 266, 14183–14187 (1991).

    CAS  PubMed  Google Scholar 

  22. Olsen, A. et al Gene organization of the pregnancy-specific glycoprotein region on human chromosome 19: Assembly and analysis of a 700-kb cosmid contig spanning the region. Genomics 23, 659–668 (1994).

    Article  CAS  Google Scholar 

  23. McCuriey, R.S. et al Physical maps of human α(1,3) fucosyltransferase genes FUT3-FUT6 on chromosome 19p13.3 and 11q21. Genomics 26, 142–146 (1995).

    Article  Google Scholar 

  24. Mohrenweiser, H.W., Tsujimoto, S., Swartz, A.L., & Brandriff, B Incorporation of genetic markers into the metric physical map of human chromosome 19. In Proceedings, Genome Mapping and Sequencing. 215 (Cold Spring Harbor, New York, 1995).

    Google Scholar 

  25. Slezak, T. et al. A database system for constructing, integrating, and displaying maps of chromosome 19. 14–23 (Proc. 28th Ann. Int. Cong. on System Sciences, 1994).

  26. Carrano, A.V. et al. A high-resolution, fluorescence-based semiautomated method for DNA fingerprinting. Genomics 4, 129–136 (1989).

    Article  CAS  Google Scholar 

  27. Tynan, K. et al. Organization of the multiple polymorphic sites of the D19S11 locus within a 650-kb cosmid contig. Genomics 17, 316–323 (1993).

    Article  CAS  Google Scholar 

  28. Ashworth, L.K. et al. Assembly of high-resolution bacterial artificial chromosome, P1-derived artificial chromosome, and cosmid contigs. Analyt. Biochem. 224, 564–571 (1995).

    Article  CAS  Google Scholar 

  29. Cox, D., Green, E., Landers, E. & Cohen, D. Assessing mapping progress in the human genome project. Science 265, 2031–2032 (1994).

    Article  CAS  Google Scholar 

  30. NIH/CEPH Collaborative Mapping Group. A comprehensive genetic linkage map of the human genome. Science 258, 67–86 (1992).

  31. Gyapay, G. et al. The 1993-94 Genethon human genetic linkage map. Nature Genet. 7, 246–339 (1994).

    Article  CAS  Google Scholar 

  32. Cooperative Human Linkage Center. A comprehensive human linkage map with centimorgan density. Science 265, 2049–2054 (1994).

    Article  CAS  Google Scholar 

  33. Briggs, M.D. et al. Pseudoachondroplasia and multiple epiphyseal dysplasia produced by mutations in the calcium binding domain of cartilage oligomeric matrix protein (COMP). Nature Genet. 10, 330–336 (1995).

    Article  CAS  Google Scholar 

  34. Knowlton, R.G. et al. High resolution genetic and physical mapping of multiple epiphyseal dysplasia and pseudoachondroplasia mutations at chromosome 19q13.1–p12. Genomics (in the press).

  35. Hecht, J.T. et al. Mutations in exon 17B of Cartilage Oligomeric Matrix Protein (COMP) cause pseudoachondroplasia. Nature Genet. 10, 325–329 (1995).

    Article  CAS  Google Scholar 

  36. Teglund, S., Olsen, A., Khan, W.N., Frangsmyr, L. & Hammerstrom, S. The pregnancy-specific glycoprotein (PSG) gene cluster on human chromosome 19: Fine structure of the 11 PSG genes and identification of 6 new genes forming a third subgroup within the carcinoembryonic antigen (CEA) family. Genomics 23, 669–684 (1994).

    Article  CAS  Google Scholar 

  37. de Jong, P.J. et al. Human chromosome-specific partial digest libraries in lambda and cosmid vectors. Cytogenet Cell Genet. 51, 985 (1989).

    Google Scholar 

  38. Nelson, D.O. & Speed, T.R. Statistical issues in construction high resolution physical maps. Statist Sci. 9, 334–354 (1994).

    Article  Google Scholar 

  39. Garcia, E. et al. A continuous high-resolution physical map spanning 17 megabases of the q12, q13.1 and q13.2 cytogenetic bands of human chromosome 19. Genomics 27, 52–66 (1995).

    Article  CAS  Google Scholar 

  40. Brownstein, B.H. et al. Isolation of single-copy human genes from a library of yeast artificial-chromosome clones. Science 244, 1348–1351 (1989).

    Article  CAS  Google Scholar 

  41. Larin, Z., Monaco, A.P. & Lehrach, H. Yeast artificial chromosome libraries containing large inserts from mouse and human DNA. Proc. natn. Acad. Sci. U.S.A. 88, 412–4127 (1991).

    Article  Google Scholar 

  42. Albertson, H.M. et al. Construction and characterization of a yeast artificial chromosome library containing seven haploid human genome equivalents. Proc. natn. Acad. Sci. U.S.A. 87, 4256–4260 (1990).

    Article  Google Scholar 

  43. Dausset, J. et al. The CEPH YAC library. Behring Inst Mitt. 91, 13–20 (1992).

    CAS  Google Scholar 

  44. loannou, P.A. et al. A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nature Genet. 6, 84–89 (1994).

    Article  Google Scholar 

  45. Shizuya, H. et al. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. natn. Acad. Sci. U.S.A. 89, 8794–8797 (1992).

    Article  CAS  Google Scholar 

  46. Shepherd, N.S. et al. Preparation and screening of an arrayed human genomic library generated with the P1 cloning system. Proc. natn. Acad. Sci. U.S.A. 91, 2629–2633 (1994).

    Article  CAS  Google Scholar 

  47. Trask, B. et al. Fluorescence in situ hybridization mapping of human chromosome 19: Cytogenetic band location of 540 cosmids and 70 genes or DNA markers. Genomics 15, 133–145 (1993).

    Article  CAS  Google Scholar 

  48. Trask, B.J. et al. Fluorescence in situ hybridization mapping in interphase chromatin. Human Genome Program, USDOE Contractor-Grantee Workshop III, Santa Fe, NM, 189, Feb. 7–10, (1993).

    Google Scholar 

  49. Feinberg, A.R. & Vogelstein, B. A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Analyt. Biochem. 132, 6–13 (1983).

    Article  CAS  Google Scholar 

  50. Olsen, A.S. et al. Automated production of high density cosmid and YAC colony filters with a robotic workstation. BioTechniques 14, 116–123 (1993).

    CAS  Google Scholar 

  51. Copeland, A. & Lennon, G. Rapid arrayed filter production using the ‘ORCA’ robot. Nature 369, 421–422 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashworth, L., Batzer, M., Brandriff, B. et al. An integrated metric physical map of human chromosome 19. Nat Genet 11, 422–427 (1995). https://doi.org/10.1038/ng1295-422

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1295-422

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing