Nature | News

Super-stretchy jelly can take a hit

Mix-and-match hydrogel is most resilient yet.

Article tools

Rights & Permissions

Your eyes aren’t deceiving you — you just watched a metal ball bounce off a sliver of jelly. But you wouldn’t put this jelly in a sherry trifle: it is a sophisticated hydrogel developed by Zhigang Suo, a materials engineer at Harvard University in Cambridge, Massachusetts, and his colleagues1.

A hydrogel is a network of polymers that soaks up lots of water to form a jelly-like material. But most shatter easily and don’t stretch far without breaking. Some of the toughest hydrogels are used to make soft contact lenses, and researchers want to make them more robust, for use in replacement cartilage or as scaffolds for growing artificial organs.

Suo’s hydrogel is made from a mixture of two polymers — alginate and polyacrylamide. Each polymer forms networks using different types of chemical bond: alginate molecules are linked together by ionic bonds, and polyacrylamide molecules by stronger covalent bonds. When the gel is stretched, hit or torn, the ionic bonds can break and reform throughout the material, dissipating energy over a wide area and causing fewer of the covalent bonds to be irreversibly ruptured. The covalent bonds hold the material together, allowing it to spring back to its original shape.

Separately, the two polymers can each form normal hydrogels — but when they are mixed together, the resulting material is far stronger than its constituent parts. The energy needed to fracture the combination hydrogel is on a par with that for natural rubber at 9,000 joules per square metre, and the gel can be stretched to 20 times its original length without breaking. “You can’t even tear it apart with your hands,” says Suo.

Journal name:
Nature
DOI:
doi:10.1038/nature.2012.11354

References

  1. Sun, J.-Y. et al. Nature 489, 133136 (2012).

For the best commenting experience, please login or register as a user and agree to our Community Guidelines. You will be re-directed back to this page where you will see comments updating in real-time and have the ability to recommend comments to other users.

Comments for this thread are now closed.

Comments

Comments Subscribe to comments

There are currently no comments.

sign up to Nature briefing

What matters in science — and why — free in your inbox every weekday.

Sign up

Listen

new-pod-red

Nature Podcast

Our award-winning show features highlights from the week's edition of Nature, interviews with the people behind the science, and in-depth commentary and analysis from journalists around the world.