Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Rho-GTPase cdc42 regulates neural progenitor fate at the apical surface

Abstract

Stem cell persistence into adulthood requires self-renewal from early developmental stages. In the developing mouse brain, only apical progenitors located at the ventricle are self-renewing, whereas basal progenitors gradually deplete. However, nothing is known about the mechanisms regulating the fundamental difference between these progenitors. Here we show that the conditional deletion of the small Rho-GTPase cdc42 at different stages of neurogenesis in mouse telencephalon results in an immediate increase in basal mitoses. Whereas cdc42-deficient progenitors have normal cell cycle length, orientation of cell division and basement membrane contact, the apical location of the Par complex and adherens junctions are gradually lost, leading to an increasing failure of apically directed interkinetic nuclear migration. These cells then undergo mitoses at basal positions and acquire the fate of basal progenitors. Thus, cdc42 has a crucial role at the apical pole of progenitors, thereby regulating the position of mitoses and cell fate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cdc42 localization and deletion by Emx1::Cre in the cerebral cortex.
Figure 2: Cell division and neurogenesis in the cerebral cortex of Emx1Cre/cdc42Δex2fl/fl mice.
Figure 3: Analysis of interkinetic nuclear migration.
Figure 4: Gradual loss of aderens junctions and Par complex in cdc42-deficient cortex.
Figure 5: Retraction of the radial process from the apical surface.
Figure 6: Molecular characteristics of progenitors in cdc42-deficient cortex.
Figure 7: Molecular markers for basal progenitors (SVZ) expand in the cdc42-deficient cortex.
Figure 8: Cell division and neurogenesis in the cerebral cortex after removal of cdc42 by hGFAP-Cre.

Similar content being viewed by others

References

  1. Smart, I.H. A pilot study of cell production by the ganglionic eminences of the developing mouse brain. J. Anat. 121, 71–84 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Haubensak, W., Attardo, A., Denk, W. & Huttner, W.B. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc. Natl. Acad. Sci. USA 101, 3196–3201 (2004).

    Article  CAS  Google Scholar 

  3. Miyata, T. et al. Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development 131, 3133–3145 (2004).

    Article  CAS  Google Scholar 

  4. Noctor, S.C., Martinez-Cerdeno, V., Ivic, L. & Kriegstein, A.R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 7, 136–144 (2004).

    Article  CAS  Google Scholar 

  5. Wu, S.X. et al. Pyramidal neurons of upper cortical layers generated by NEX-positive progenitor cells in the subventricular zone. Proc. Natl. Acad. Sci. USA 102, 17172–17177 (2005).

    Article  CAS  Google Scholar 

  6. Götz, M. & Huttner, W.B. The cell biology of neurogenesis. Nat. Rev. Mol. Cell Biol. 6, 777–788 (2005).

    Article  Google Scholar 

  7. Sun, Y., Goderie, S.K. & Temple, S. Asymmetric distribution of EGFR receptor during mitosis generates diverse CNS progenitor cells. Neuron 45, 873–886 (2005).

    Article  CAS  Google Scholar 

  8. Sauer, F.C. Mitosis in the neural tube. J. Comp. Neurol. 62, 377–405 (1935).

    Article  Google Scholar 

  9. Tramontin, A.D., Garcia-Verdugo, J.M., Lim, D.A. & Alvarez-Buylla, A. Postnatal development of radial glia and the ventricular zone (VZ): a continuum of the neural stem cell compartment. Cereb. Cortex 13, 580–587 (2003).

    Article  Google Scholar 

  10. Zhang, R. et al. Stroke transiently increases subventricular zone cell division from asymmetric to symmetric and increases neuronal differentiation in the adult rat. J. Neurosci. 24, 5810–5815 (2004).

    Article  CAS  Google Scholar 

  11. Alvarez-Buylla, A., Garcia-Verdugo, J.M. & Tramontin, A.D. A unified hypothesis on the lineage of neural stem cells. Nat. Rev. Neurosci. 2, 287–293 (2001).

    Article  CAS  Google Scholar 

  12. Englund, C. et al. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J. Neurosci. 25, 247–251 (2005).

    Article  CAS  Google Scholar 

  13. Zimmer, C., Tiveron, M.C., Bodmer, R. & Cremer, H. Dynamics of Cux2 expression suggests that an early pool of SVZ precursors is fated to become upper cortical layer neurons. Cereb. Cortex 14, 1408–1420 (2004).

    Article  Google Scholar 

  14. Smart, I.H., Dehay, C., Giroud, P., Berland, M. & Kennedy, H. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb. Cortex 12, 37–53 (2002).

    Article  Google Scholar 

  15. Lukaszewicz, A. et al. G1 phase regulation, area-specific cell cycle control, and cytoarchitectonics in the primate cortex. Neuron 47, 353–364 (2005).

    Article  CAS  Google Scholar 

  16. Manabe, N. et al. Association of ASIP/mPAR-3 with adherens junctions of mouse neuroepithelial cells. Dev. Dyn. 225, 61–69 (2002).

    Article  CAS  Google Scholar 

  17. Hutterer, A., Betschinger, J., Petronczki, M. & Knoblich, J.A. Sequential roles of Cdc42, Par-6, aPKC, and Lgl in the establishment of epithelial polarity during Drosophila embryogenesis. Dev. Cell 6, 845–854 (2004).

    Article  CAS  Google Scholar 

  18. Etienne-Manneville, S., Manneville, J.B., Nicholls, S., Ferenczi, M.A. & Hall, A. Cdc42 and Par6-PKCzeta regulate the spatially localized association of Dlg1 and APC to control cell polarization. J. Cell Biol. 170, 895–901 (2005).

    Article  CAS  Google Scholar 

  19. Lin, D. et al. A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nat. Cell Biol. 2, 540–547 (2000).

    Article  CAS  Google Scholar 

  20. Schaar, B.T. & McConnell, S.K. Cytoskeletal coordination during neuronal migration. Proc. Natl. Acad. Sci. USA 102, 13652–13657 (2005).

    Article  CAS  Google Scholar 

  21. Tsai, L.H. & Gleeson, J.G. Nucleokinesis in neuronal migration. Neuron 46, 383–388 (2005).

    Article  CAS  Google Scholar 

  22. Govek, E.-E., Newey, S.E. & Van Aelst, L. The role of the Rho GTPases in neuronal development. Genes Dev. 19, 1–49 (2005).

    Article  CAS  Google Scholar 

  23. Wu, X. et al. Cdc42 controls progenitor cell differentiation and beta-catenin turnover in skin. Genes Dev. 20, 571–585 (2006).

    Article  CAS  Google Scholar 

  24. Iwasato, T. et al. Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature 406, 726–731 (2000).

    Article  CAS  Google Scholar 

  25. Haubst, N. et al. Molecular dissection of Pax6 function: the specific roles of the paired domain and homeodomain in brain development. Development 131, 6131–6140 (2004).

    Article  CAS  Google Scholar 

  26. Miyata, T., Kawaguchi, A., Okano, H. & Ogawa, M. Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31, 727–741 (2001).

    Article  CAS  Google Scholar 

  27. Noctor, S.C., Flint, A.C., Weissman, T.A., Dammerman, R.S. & Kriegstein, A.R. Neurons derived from radial glial cells establish radial units in neocortex. Nature 409, 714–720 (2001).

    Article  CAS  Google Scholar 

  28. Calegari, F., Haubensak, W., Haffner, C. & Huttner, W.B. Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development. J. Neurosci. 25, 6533–6538 (2005).

    Article  CAS  Google Scholar 

  29. Palazzo, A.F. et al. Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization. Curr. Biol. 11, 1536–1541 (2001).

    Article  CAS  Google Scholar 

  30. Olson, M.F., Ashworth, A. & Hall, A. An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science 269, 1270–1272 (1995).

    Article  CAS  Google Scholar 

  31. Gomes, E.R., Jani, S. & Gundersen, G.G. Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell 121, 451–463 (2005).

    Article  CAS  Google Scholar 

  32. Heins, N. et al. Emx2 promotes symmetric cell divisions and a multipotential fate in precursors from the cerebral cortex. Mol. Cell. Neurosci. 18, 485–502 (2001).

    Article  CAS  Google Scholar 

  33. Kosodo, Y. et al. Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO J. 23, 2314–2324 (2004).

    Article  CAS  Google Scholar 

  34. Chenn, A. & McConnell, S.K. Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell 82, 631–641 (1995).

    Article  CAS  Google Scholar 

  35. Takahashi, T., Nowakowski, R.S. & Caviness, V.S. The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall. J. Neurosci. 15, 6046–6057 (1995).

    Article  CAS  Google Scholar 

  36. Joberty, G., Petersen, C., Gao, L. & Macara, I.G. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat. Cell Biol. 2, 531–539 (2000).

    Article  CAS  Google Scholar 

  37. Weigmann, A., Corbeil, D., Hellwig, A. & Huttner, W.B. Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc. Natl. Acad. Sci. USA 94, 12425–12430 (1997).

    Article  CAS  Google Scholar 

  38. Macara, I.G. Parsing the polarity code. Nat. Rev. Mol. Cell Biol. 5, 220–231 (2004).

    Article  CAS  Google Scholar 

  39. Eto, K. & Osumi-Yamashita, N. Whole embryo culture and the study of postimplantation mammalian development. Dev. Growth Differ. 37, 123–132 (1995).

    Article  Google Scholar 

  40. Gotz, M., Stoykova, A. & Gruss, P. Pax6 controls radial glia differentiation in the cerebral cortex. Neuron 21, 1031–1044 (1998).

    Article  CAS  Google Scholar 

  41. Tarabykin, V., Stoykova, A., Usman, N. & Gruss, P. Cortical upper layer neurons derive from the subventricular zone as indicated by Svet1 gene expression. Development 128, 1983–1993 (2001).

    CAS  PubMed  Google Scholar 

  42. Schuurmans, C. et al. Sequential phases of cortical specification involve Neurogenin-dependent and -independent pathways. EMBO J. 23, 2892–2902 (2004).

    Article  CAS  Google Scholar 

  43. Jaffe, A.B. & Hall, A. RHO GTPases: biochemistry and biology. Annu. Rev. Cell Dev. Biol. 21, 247–269 (2005).

    Article  CAS  Google Scholar 

  44. Czuchra, A. et al. Cdc42 is not essential for filopodium formation, directed migration, cell polarization, and mitosis in fibroblastoid cells. Mol. Biol. Cell 16, 4473–4484 (2005).

    Article  CAS  Google Scholar 

  45. Mertens, A.E., Rygiel, T.P., Olivo, C., van der Kammen, R. & Collard, J.G. The Rac activator Tiam1 controls tight junction biogenesis in keratinocytes through binding to and activation of the Par polarity complex. J. Cell Biol. 170, 1029–1037 (2005).

    Article  CAS  Google Scholar 

  46. Kholmanskikh, S.S. et al. Calcium-dependent interaction of Lis1 with IQGAP1 and Cdc42 promotes neuronal motility. Nat. Neurosci. 9, 50–57 (2006).

    Article  CAS  Google Scholar 

  47. Machon, O., van den Bout, C.J., Backman, M., Kemler, R. & Krauss, S. Role of [beta]-catenin in the developing cortical and hippocampal neuroepithelium. Neuroscience 122, 129–143 (2003).

    Article  CAS  Google Scholar 

  48. Hatakeyama, J. Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development 131, 5539–5550 (2004).

    Article  CAS  Google Scholar 

  49. Li, H.S. et al. Inactivation of Numb and Numblike in embryonic dorsal forebrain impairs neurogenesis and disrupts cortical morphogenesis. Neuron 40, 1105–1118 (2003).

    Article  CAS  Google Scholar 

  50. Imai, F. et al. Inactivation of aPKClambda results in the loss of adherens junctions in neuroepithelial cells without affecting neurogenesis in mouse neocortex. Development 133, 1735–1744 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R.F. Hevner, D. Lin, D.J. Anderson, C. Schuurmans and V. Tarabykin for probes and antibodies; Y.-A. Barde for helpful comments on the manuscript; and M. Körbs, A. Bust, Z. Kirejczyk and B. DelGrande for excellent technical and secretarial assistance. M.G. is supported by the German Research Foundation. S.C. is recipient of a Marco Polo Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

S.C. did most of the experimental work. A.A. did the electroporation analysis. X.W. and C.B. generated the floxed cdc42 mice. T.I. and S.I. generated the Emx1::cre mice. M.W.-B. did the electronmicroscopic analysis. H.M.E., M.A.R. and T.T.S. taught and helped with the time-lapse analysis. W.B.H. was involved in writing the manuscript and designing experiments. M.G. designed the entire project, directed most of the experiments and wrote the manuscript together with S.C.

Corresponding author

Correspondence to Magdalena Götz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Phenotype of the adult cdc42-deficient cortex. (PDF 391 kb)

Supplementary Fig. 2

Analysis of orientation of cell division and cell cycle. (PDF 75 kb)

Supplementary Fig. 3

Distribution pattern of BrdU-labeled cells after S-phase. (PDF 184 kb)

Supplementary Fig. 4

Analysis of basal lamina, radial processes and adherens junctions after cdc42 deletion at E10. (PDF 843 kb)

Supplementary Video 1

Example 1 of a cortical neuroepithelial cell isolated at embryonic day 12 from cdc42-deficient cortex exhibiting interkinetic nuclear migration in vitro. See Methods for details. (AVI 958 kb)

Supplementary Video 2

Example 2 of a cortical neuroepithelial cell isolated at embryonic day 12 from cdc42-deficient cortex exhibiting interkinetic nuclear migration in vitro. See Methods for details. (AVI 2536 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cappello, S., Attardo, A., Wu, X. et al. The Rho-GTPase cdc42 regulates neural progenitor fate at the apical surface. Nat Neurosci 9, 1099–1107 (2006). https://doi.org/10.1038/nn1744

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1744

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing