Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Postsynaptic excitability is necessary for strengthening of cortical sensory responses during experience-dependent development

Abstract

Sensory experience is necessary for normal cortical development. This has been shown by sensory deprivation and pharmacological perturbation of the cortex. Because these manipulations affect the cortical network as a whole, the role of postsynaptic cellular properties during experience-dependent development is unclear. Here we addressed the developmental role of somatodendritic excitability, which enables postsynaptic spike timing–dependent forms of plasticity, in rat somatosensory cortex. We used short interfering RNA (siRNA)-based knockdown of Na+ channels to suppress the somatodendritic excitability of small numbers of layer 2/3 pyramidal neurons in the barrel cortex, without altering the ascending sensory pathway. In vivo recordings from siRNA-expressing cells revealed that this manipulation interfered with the normal developmental strengthening of sensory responses. The sensory responsiveness of neighboring cortical neurons was unchanged, indicating that the cortical network was unchanged. We conclude that somatodendritic excitability of the postsynaptic neuron is needed for the regulation of synaptic strength in the developing sensory cortex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Na+ channel knockdown by lentivirus-based siRNA expression.
Figure 2: Numerical simulation of the electrical behavior of a cortical pyramidal cell with reduced Na+ conductance.
Figure 3: Evaluation of Nav1.1–1.3 knockdown by in vitro electrophysiology and western blotting.
Figure 4: Action potential–evoked dendritic Ca2+ transients are diminished in Nav1.1–1.3 knockdown neurons.
Figure 5: Nav1.1–1.3 knockdown reduces sensory responses.
Figure 6: Reduced sePSPs in Nav1.1–1.3 knockdown cells are due to postsynaptic development effects.
Figure 7: Effect of Nav1.1–1.3 knockdown on layer 2/3 spinogenesis and synaptogenesis.

Similar content being viewed by others

References

  1. Sur, M. & Leamey, C.A. Development and plasticity of cortical areas and networks. Nat. Rev. Neurosci. 2, 251–262 (2001).

    Article  CAS  Google Scholar 

  2. Hubel, D.H. & Wiesel, T.N. Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. J. Neurophysiol. 26, 994–1002 (1963).

    Article  CAS  Google Scholar 

  3. Hubel, D.H. & Wiesel, T.N. Binocular interaction in striate cortex of kittens reared with artificial squint. J. Neurophysiol. 28, 1041–1059 (1965).

    Article  CAS  Google Scholar 

  4. Stryker, M.P. & Strickland, S.L. Physiological segregation of ocular dominance columns depends on the pattern of afferent electrical activity. Invest. Ophthalmol. Vis. Sci. 25, 278 (1984).

    Google Scholar 

  5. Bi, G. & Poo, M. Synaptic modification by correlated activity: Hebb's postulate revisited. Annu. Rev. Neurosci. 24, 139–166 (2001).

    Article  CAS  Google Scholar 

  6. Song, S. & Abbott, L.F. Cortical development and remapping through spike timing-dependent plasticity. Neuron 32, 339–350 (2001).

    Article  CAS  Google Scholar 

  7. Markram, H., Lubke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic action potentials and EPSPs. Science 275, 213–215 (1997).

    Article  CAS  Google Scholar 

  8. Magee, J.C. & Johnston, D. A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275, 209–213 (1997).

    Article  CAS  Google Scholar 

  9. Golding, N.L., Staff, N.P. & Spruston, N. Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418, 326–331 (2002).

    Article  CAS  Google Scholar 

  10. Stuart, G.J. & Sakmann, B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367, 69–72 (1994).

    Article  CAS  Google Scholar 

  11. Regehr, W., Kehoe, J.S., Ascher, P. & Armstrong, C. Synaptically triggered action potentials in dendrites. Neuron 11, 145–151 (1993).

    Article  CAS  Google Scholar 

  12. Woolsey, T.A. & Van der Loos, H. The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res. 17, 205–242 (1970).

    Article  CAS  Google Scholar 

  13. Simons, D.J. & Land, P.W. Early experience of tactile stimulation influences organization of somatic sensory cortex. Nature 326, 694–697 (1987).

    Article  CAS  Google Scholar 

  14. Fox, K. A critical period for experience-dependent synaptic plasticity in rat barrel cortex. J. Neurosci. 12, 1826–1838 (1992).

    Article  CAS  Google Scholar 

  15. Glazewski, S. & Fox, K. Time course of experience-dependent synaptic potentiation and depression in barrel cortex of adolescent rats. J. Neurophysiol. 75, 1714–1729 (1996).

    Article  CAS  Google Scholar 

  16. Stern, E.A., Maravall, M. & Svoboda, K. Rapid development and plasticity of layer 2/3 maps in rat barrel cortex in vivo. Neuron 31, 305–315 (2001).

    Article  CAS  Google Scholar 

  17. Shepherd, G.M., Pologruto, T.A. & Svoboda, K. Circuit analysis of experience-dependent plasticity in the developing rat barrel cortex. Neuron 38, 277–289 (2003).

    Article  CAS  Google Scholar 

  18. Bureau, I., Shepherd, G.M. & Svoboda, K. Precise development of functional and anatomical columns in the neocortex. Neuron 42, 789–801 (2004).

    Article  CAS  Google Scholar 

  19. Margrie, T.W. et al. Targeted whole-cell recordings in the mammalian brain in vivo. Neuron 39, 911–918 (2003).

    Article  CAS  Google Scholar 

  20. Dittgen, T. et al. Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proc. Natl. Acad. Sci. USA 101, 18206–18211 (2004).

    Article  CAS  Google Scholar 

  21. Komai, S., Denk, W., Osten, P., Brecht, M. & Margrie, T.W. Two-photon targeted patching (TPTP) in vivo. Nat. Protocols 1, 648–653 (2006).

    Article  Google Scholar 

  22. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  Google Scholar 

  23. Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  CAS  Google Scholar 

  24. Yu, F.H. & Catterall, W.A. Overview of the voltage-gated sodium channel family. Genome Biol. 4, 207 (2003).

    Article  Google Scholar 

  25. Mainen, Z.F. & Sejnowski, T.J. Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382, 363–366 (1996).

    Article  CAS  Google Scholar 

  26. Mainen, Z.F., Joerges, J., Huguenard, J.R. & Sejnowski, T.J. A model of spike initiation in neocortical pyramidal neurons. Neuron 15, 1427–1439 (1995).

    Article  CAS  Google Scholar 

  27. Palmer, L.M. & Stuart, G.J. Site of action potential initiation in layer 5 pyramidal neurons. J. Neurosci. 26, 1854–1863 (2006).

    Article  CAS  Google Scholar 

  28. Waters, J., Larkum, M., Sakmann, B. & Helmchen, F. Supralinear Ca2+ influx into dendritic tufts of layer 2/3 neocortical pyramidal neurons in vitro and in vivo. J. Neurosci. 23, 8558–8567 (2003).

    Article  CAS  Google Scholar 

  29. Moore, C.I. & Nelson, S.B. Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. J. Neurophysiol. 80, 2882–2892 (1998).

    Article  CAS  Google Scholar 

  30. Brecht, M., Roth, A. & Sakmann, B. Dynamic receptive fields of reconstructed pyramidal cells in layers 3 and 2 of rat somatosensory barrel cortex. J. Physiol. (Lond.) 553, 243–265 (2003).

    Article  CAS  Google Scholar 

  31. Petersen, C.C., Hahn, T.T., Mehta, M., Grinvald, A. & Sakmann, B. Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex. Proc. Natl. Acad. Sci. USA 100, 13638–13643 (2003).

    Article  CAS  Google Scholar 

  32. Sachdev, R.N., Ebner, F.F. & Wilson, C.J. Effect of subthreshold up and down states on the whisker-evoked response in somatosensory cortex. J. Neurophysiol. 92, 3511–3521 (2004).

    Article  Google Scholar 

  33. Stuart, G. & Sakmann, B. Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons. Neuron 15, 1065–1076 (1995).

    Article  CAS  Google Scholar 

  34. Lendvai, B., Stern, E.A., Chen, B. & Svoboda, K. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404, 876–881 (2000).

    Article  CAS  Google Scholar 

  35. Micheva, K.D. & Beaulieu, C. Quantitative aspects of synaptogenesis in the rat barrel field cortex with special reference to GABA circuitry. J. Comp. Neurol. 373, 340–354 (1996).

    Article  CAS  Google Scholar 

  36. Holtmaat, A.J. et al. Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45, 279–291 (2005).

    Article  CAS  Google Scholar 

  37. Zuo, Y., Yang, G., Kwon, E. & Gan, W.B. Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex. Nature 436, 261–265 (2005).

    Article  CAS  Google Scholar 

  38. Feldmeyer, D., Lubke, J., Silver, R.A. & Sakmann, B. Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column. J. Physiol. (Lond.) 538, 803–822 (2002).

    Article  CAS  Google Scholar 

  39. Yuste, R. & Bonhoeffer, T. Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nat. Rev. Neurosci. 5, 24–34 (2004).

    Article  CAS  Google Scholar 

  40. Zuo, Y., Lin, A., Chang, P. & Gan, W.B. Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron 46, 181–189 (2005).

    Article  CAS  Google Scholar 

  41. Feldman, D.E. & Brecht, M. Map plasticity in somatosensory cortex. Science 310, 810–815 (2005).

    Article  CAS  Google Scholar 

  42. Reiter, H.O. & Stryker, M.P. Neural plasticity without postsynaptic action potentials: less-active inputs become dominant when kitten visual cortical cells are pharmacologically inhibited. Proc. Natl. Acad. Sci. USA 85, 3623–3627 (1988).

    Article  CAS  Google Scholar 

  43. Bear, M.F., Kleinschmidt, A., Gu, Q.A. & Singer, W. Disruption of experience-dependent synaptic modifications in striate cortex by infusion of an NMDA receptor antagonist. J. Neurosci. 10, 909–925 (1990).

    Article  CAS  Google Scholar 

  44. Schlaggar, B.L., Fox, K. & O'Leary, D.D. Postsynaptic control of plasticity in developing somatosensory cortex. Nature 364, 623–626 (1993).

    Article  CAS  Google Scholar 

  45. Ruthazer, E.S. You're perfect, now change–redefining the role of developmental plasticity. Neuron 45, 825–828 (2005).

    Article  CAS  Google Scholar 

  46. Schuett, S., Bonhoeffer, T. & Hubener, M. Pairing-induced changes of orientation maps in cat visual cortex. Neuron 32, 325–337 (2001).

    Article  CAS  Google Scholar 

  47. Meliza, C.D. & Dan, Y. Receptive-field modification in rat visual cortex induced by paired visual stimulation and single-cell spiking. Neuron 49, 183–189 (2006).

    Article  CAS  Google Scholar 

  48. Allen, C.B., Celikel, T. & Feldman, D.E. Long-term depression induced by sensory deprivation during cortical map plasticity in vivo. Nat. Neurosci. 6, 291–299 (2003).

    Article  CAS  Google Scholar 

  49. Celikel, T., Szostak, V.A. & Feldman, D.E. Modulation of spike timing by sensory deprivation during induction of cortical map plasticity. Nat. Neurosci. 7, 534–541 (2004).

    Article  CAS  Google Scholar 

  50. Lisman, J. & Spruston, N. Postsynaptic depolarization requirements for LTP and LTD: a critique of spike timing-dependent plasticity. Nat. Neurosci. 8, 839–841 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P.H. Seeburg for long-term support; C. Grosskurth, S. Gruenewald, M. Kaiser and J. Müller for technical assistance; and R. Bruno, T. Celikel, D. Haydon-Wallace, M. Häusser, T. Margrie, M. Mehta, B. Sakmann and P.H. Seeburg for comments on the manuscript. This work was supported by the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Osten.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Correlation between AP amplitude and AP threshold in Nav1.1-1.3 knockdown layer 2/3 pyramidal neurons in vitro. (PDF 510 kb)

Supplementary Fig. 2

Nav1.1–1.3 knock-down reduces sensory-evoked responses. (PDF 527 kb)

Supplementary Fig. 3

Correlation between sePSP amplitude and number of infected Nav1.1–1.3 knockdown cells in vivo. (PDF 417 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komai, S., Licznerski, P., Cetin, A. et al. Postsynaptic excitability is necessary for strengthening of cortical sensory responses during experience-dependent development. Nat Neurosci 9, 1125–1133 (2006). https://doi.org/10.1038/nn1752

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1752

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing