Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

IGF-1 receptor is essential for the establishment of hippocampal neuronal polarity

Abstract

How a neuron becomes polarized remains largely unknown. Results obtained with a function-blocking antibody and an siRNA targeting the insulin-like growth factor-1 (IGF-1) receptor suggest that an essential step in the establishment of hippocampal neuronal polarity and the initiation of axonal outgrowth is the activation of the phosphatidylinositol 3-kinase (PI3k)-Cdc42 pathway by the IGF-1 receptor, but not by the TrkA or TrkB receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reducing IGF-1R function by incubation with blocking antibody or by siRNA silencing prevents axon formation in rat hippocampal neurons.
Figure 2: Cotransfection of neurons with IGF-1R–targeted siRNA and cDNA encoding fc- Cdc-42 rescues the phenotype.

Similar content being viewed by others

References

  1. Craig, A.M. & Banker, G. Annu. Rev. Neurosci. 17, 267–310 (1994).

    Article  CAS  Google Scholar 

  2. Shi, S.H., Jan, L.Y. & Jan, Y.N. Cell 112, 63–75 (2003).

    Article  CAS  Google Scholar 

  3. Ménager, C., Arimura, N., Fukata, Y. & Kaibuchi, K. J. Neurochem. 89, 109–118 (2004).

    Article  Google Scholar 

  4. Nishimura, T. et al. Nat. Cell Biol. 7, 270–277 (2005).

    Article  CAS  Google Scholar 

  5. Quiroga, S., Garofalo, R. & Pfenninger, K.H. Proc. Natl. Acad. Sci. USA 92, 4309–4312 (1995).

    Article  CAS  Google Scholar 

  6. Mascotti, F., Cáceres, A., Pfenninger, K.H. & Quiroga, S. J. Neurosci. 17, 1447–1459 (1997).

    Article  CAS  Google Scholar 

  7. Schwamborn, J.C. & Puschel, A.W. Nat. Neurosci. 7, 923–929 (2004).

    Article  CAS  Google Scholar 

  8. Roudabush, F.L., Pierce, K.L., Maudsley, S., Khan, K.D. & Luttrell, L.M. J. Biol. Chem. 275, 22583–22589 (2000).

    Article  CAS  Google Scholar 

  9. Da Silva, J.S., Hasegawa, T., Miyagi, T., Dotti, C.G. & Abad-Rodriguez, J. Nat. Neurosci. 8, 606–615 (2005).

    Article  CAS  Google Scholar 

  10. Smeyne, R.J. et al. Nature 368, 246–249 (1994).

    Article  CAS  Google Scholar 

  11. Liu, J.P., Baker, J., Perkins, A.S., Robertson, E.J. & Efstratiadis, A. Cell 75, 59–72 (1993).

    CAS  PubMed  Google Scholar 

  12. Zheng, W.H. & Quirion, R. J. Neurochem. 89, 844–852 (2004).

    Article  CAS  Google Scholar 

  13. Pfenninger, K.H. et al. J. Cell Sci. 116, 1209–1217 (2003).

    Article  CAS  Google Scholar 

  14. Laurino, L. et al. J. Cell Sci. 118, 3653–3663 (2005).

    Article  CAS  Google Scholar 

  15. Klein, R. et al. Cell 75, 113–122 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Consejo de Investigaciones Científicas y Técnicas (CONICET), Agencia Córdoba Ciencia, Secretaría de Ciencia y Tecnología de la Universidad Nacional de Córdoba (SECYT-U.N.C.) and Ministerio de Salud, República Argentina (to S.Q.); by the US National Institutes of Health (grant R01 NS41029 to K.H.P.); by a Fogarty International Research Collaboration Award (1R03 TW05763 to K.H.P. and S.Q.); by the Agencia Nacional de Promoción Científica y Tecnológica, Argentina (A.C., S.Q. and G.P.); and by the International Research Scholar Program of the Howard Hughes Medical Institute (HHMI 75197-553201 to A.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Quiroga.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Specificity of the anti-active IGF-1R antibody. (PDF 281 kb)

Supplementary Fig. 2

Tau did not distribute to a single neurite in αIR3 treated neurons. (PDF 296 kb)

Supplementary Fig. 3

Transfection with an IGF-1R targeted siRNA silenced the expression of βgc-containing IGF-1R to non-detectable levels and inhibited hippocampal neuron polarization. (PDF 230 kb)

Supplementary Fig. 4

siRNA-treated neurons showed no significant differences in viability, whereas significant differences were evident in neuronal polarization. (PDF 351 kb)

Supplementary Fig. 5

siRNA treated neurons expressed near-normal levels of activatable BDNF receptor but were unable to form axons. (PDF 327 kb)

Supplementary Fig. 6

Neurons expressed insulin receptor (not affected by IGF-1R-targeted siRNA). (PDF 278 kb)

Supplementary Fig. 7

Co-transfection with a dominant-negative form of cdc-42 did not produce any noticeable effects in the IGF-1R-suppressed neurons. (PDF 235 kb)

Supplementary Methods (PDF 130 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sosa, L., Dupraz, S., Laurino, L. et al. IGF-1 receptor is essential for the establishment of hippocampal neuronal polarity. Nat Neurosci 9, 993–995 (2006). https://doi.org/10.1038/nn1742

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1742

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing