Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distinct timing in the activity of cannabinoid-sensitive and cannabinoid-insensitive basket cells

Abstract

Cannabinoids are powerful modulators of inhibition, yet the precise spike timing of cannabinoid receptor (CB1R)-expressing inhibitory neurons in relation to other neurons in the circuit is poorly understood. Here we found that the spike timing of CB1R-expressing basket cells, a major target for cannabinoids in the rat hippocampus, was distinct from the other main group of basket cells, the CB1R-negative. Despite receiving the same afferent inputs, the synaptic and biophysical properties of the two cell types were tuned to detect different features of activity. CB1R-negative basket cells responded reliably and immediately to subtle and repetitive excitation. In contrast, CB1R-positive basket cells responded later and did not follow repetitive activity, but were better suited to integrate the consecutive excitation of independent afferents. This temporal separation in the activity of the two basket cell types generated distinct epochs of somatic inhibition that were differentially affected by endocannabinoids.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of CB1R-positive and -negative basket cells.
Figure 2: Characterization of morphological, intrinsic and synaptic properties of CB1R-positive and -negative basket cells.
Figure 3: Distinct excitation of CB1R-positive and -negative basket cells.
Figure 4: Distinct dynamics of excitation of CB1R-positive and -negative basket cells.
Figure 5: Transient recruitment of CB1R-positive basket cells.
Figure 6: Distinct integration time windows in CB1R-positive and -negative basket cells.
Figure 7: Differential contribution of CB1R-positive and -negative basket cells to feed-forward and feedback inhibition.

Similar content being viewed by others

References

  1. Andersen, P., Eccles, J.C. & Loyning, Y. Recurrent inhibition in the hippocampus with identification of the inhibitory cell and its synapses. Nature 198, 540–542 (1963).

    Article  CAS  PubMed  Google Scholar 

  2. Mann, E.O., Suckling, J.M., Hajos, N., Greenfield, S.A. & Paulsen, O. Perisomatic feedback inhibition underlies cholinergically induced fast network oscillations in the rat hippocampus in vitro. Neuron 45, 105–117 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Cobb, S.R., Buhl, E.H., Halasy, K., Paulsen, O. & Somogyi, P. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378, 75–78 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Miles, R., Toth, K., Gulyas, A.I., Hajos, N. & Freund, T.F. Differences between somatic and dendritic inhibition in the hippocampus. Neuron 16, 815–823 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Pouille, F. & Scanziani, M. Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science 293, 1159–1163 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Fricker, D. & Miles, R. EPSP amplification and the precision of spike timing in hippocampal neurons. Neuron 28, 559–569 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Bartos, M. et al. Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proc. Natl. Acad. Sci. USA 99, 13222–13227 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Freund, T.F. Interneuron diversity series: rhythm and mood in perisomatic inhibition. Trends Neurosci. 26, 489–495 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Bodor, A.L. et al. Endocannabinoid signaling in rat somatosensory cortex: laminar differences and involvement of specific interneuron types. J. Neurosci. 25, 6845–6856 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Katona, I. et al. Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J. Neurosci. 19, 4544–4558 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tsou, K., Mackie, K., Sanudo-Pena, M.C. & Walker, J.M. Cannabinoid CB1 receptors are localized primarily on cholecystokinin-containing GABAergic interneurons in the rat hippocampal formation. Neuroscience 93, 969–975 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Pitler, T.A. & Alger, B.E. Depolarization-induced suppression of GABAergic inhibition in rat hippocampal pyramidal cells: G protein involvement in a presynaptic mechanism. Neuron 13, 1447–1455 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Wilson, R.I. & Nicoll, R.A. Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410, 588–592 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Nicoll, R.A. & Alger, B.E. The brain's own marijuana. Sci. Am. 291, 68–75 (2004).

    Article  PubMed  Google Scholar 

  15. Ali, A.B. & Thomson, A.M. Facilitating pyramid to horizontal oriens-alveus interneurone inputs: dual intracellular recordings in slices of rat hippocampus. J. Physiol. (Lond.) 507, 185–199 (1998).

    Article  CAS  Google Scholar 

  16. Ali, A.B., Deuchars, J., Pawelzik, H. & Thomson, A.M. CA1 pyramidal to basket and bistratified cell EPSPs: dual intracellular recordings in rat hippocampal slices. J. Physiol. (Lond.) 507, 201–217 (1998).

    Article  CAS  Google Scholar 

  17. McBain, C.J. & Fisahn, A. Interneurons unbound. Nat. Rev. Neurosci. 2, 11–23 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Pouille, F. & Scanziani, M. Routing of spike series by dynamic circuits in the hippocampus. Nature 429, 717–723 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Losonczy, A., Zhang, L., Shigemoto, R., Somogyi, P. & Nusser, Z. Cell type dependence and variability in the short-term plasticity of EPSCs in identified mouse hippocampal interneurones. J. Physiol. (Lond.) 542, 193–210 (2002).

    Article  CAS  Google Scholar 

  20. Freund, T.F. & Buzsaki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Klausberger, T. et al. Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421, 844–848 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Klausberger, T. et al. Complementary roles of cholecystokinin- and parvalbumin-expressing GABAergic neurons in hippocampal network oscillations. J. Neurosci. 25, 9782–9793 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hefft, S. & Jonas, P. Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron-principal neuron synapse. Nat. Neurosci. 8, 1319–1328 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Deuchars, J. & Thomson, A.M. CA1 pyramid-pyramid connections in rat hippocampus in vitro: dual intracellular recordings with biocytin filling. Neuroscience 74, 1009–1018 (1996).

    CAS  PubMed  Google Scholar 

  25. Mittmann, W., Koch, U. & Hausser, M. Feed-forward inhibition shapes the spike output of cerebellar Purkinje cells. J. Physiol. (Lond.) 563, 369–378 (2005).

    Article  CAS  Google Scholar 

  26. Andersen, P., Bland, B.H. & Dudar, J.D. Organization of the hippocampal output. Exp. Brain Res. 17, 152–168 (1973).

    Article  CAS  PubMed  Google Scholar 

  27. Wierenga, C.J. & Wadman, W.J. Functional relation between interneuron input and population activity in the rat hippocampal cornu ammonis 1 area. Neuroscience 118, 1129–1139 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Ameri, A. The effects of cannabinoids on the brain. Prog. Neurobiol. 58, 315–348 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Gulyas, A.I., Megias, M., Emri, Z. & Freund, T.F. Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the CA1 area of the rat hippocampus. J. Neurosci. 19, 10082–10097 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Matyas, F., Freund, T.F. & Gulyas, A.I. Convergence of excitatory and inhibitory inputs onto CCK-containing basket cells in the CA1 area of the rat hippocampus. Eur. J. Neurosci. 19, 1243–1256 (2004).

    Article  PubMed  Google Scholar 

  31. Faber, D.S. & Korn, H. Applicability of the coefficient of variation method for analyzing synaptic plasticity. Biophys. J. 60, 1288–1294 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sik, A., Penttonen, M., Ylinen, A. & Buzsaki, G. Hippocampal CA1 interneurons: an in vivo intracellular labeling study. J. Neurosci. 15, 6651–6665 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Katsumaru, H., Kosaka, T., Heizmann, C.W. & Hama, K. Immunocytochemical study of GABAergic neurons containing the calcium-binding protein parvalbumin in the rat hippocampus. Exp. Brain Res. 72, 347–362 (1988).

    CAS  PubMed  Google Scholar 

  34. Fukuda, T., Aika, Y., Heizmann, C.W. & Kosaka, T. Dense GABAergic input on somata of parvalbumin-immunoreactive GABAergic neurons in the hippocampus of the mouse. Neurosci. Res. 26, 181–194 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Galarreta, M., Erdelyi, F., Szabo, G. & Hestrin, S. Electrical coupling among irregular-spiking GABAergic interneurons expressing cannabinoid receptors. J. Neurosci. 24, 9770–9778 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Andersen, P. & Eccles, J. Inhibitory phasing of neuronal discharge. Nature 196, 645–647 (1962).

    Article  CAS  PubMed  Google Scholar 

  37. Csicsvari, J., Jamieson, B., Wise, K.D. & Buzsaki, G. Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 37, 311–322 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Hajos, N. et al. Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations. Eur. J. Neurosci. 12, 3239–3249 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Morales, M. & Backman, C. Coexistence of serotonin 3 (5–HT3) and CB1 cannabinoid receptors in interneurons of hippocampus and dentate gyrus. Hippocampus 12, 756–764 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Dingledine, R. & Langmoen, I.A. Conductance changes and inhibitory actions of hippocampal recurrent IPSPs. Brain Res. 185, 277–287 (1980).

    Article  CAS  PubMed  Google Scholar 

  41. Alger, B.E. & Nicoll, R.A. Feed-forward dendritic inhibition in rat hippocampal pyramidal cells studied in vitro. J. Physiol. (Lond.) 328, 105–123 (1982).

    Article  CAS  Google Scholar 

  42. Losonczy, A., Biro, A.A. & Nusser, Z. Persistently active cannabinoid receptors mute a subpopulation of hippocampal interneurons. Proc. Natl. Acad. Sci. USA 101, 1362–1367 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. Somogyi for his help in the morphological identification of basket cells and their discrimination from axo-axonic cells; C. Kapfer for his help in establishing immunohistochemical procedures; K. Mackie (University of Washington, Seattle) for his gift of the CB1R antibody; and J. Isaacson and the members of the Scanziani lab for comments on the manuscript. This work was funded by the US National Institutes of Health (MH71401, MH70058 and NIDA 5T32DA007315).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Scanziani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1a

Reconstructions of CB1R-positive and-negative basket cells. (PDF 678 kb)

Supplementary Fig. 1b

Reconstructions of CB1R-positive and-negative basket cells. (PDF 492 kb)

Supplementary Fig. 2

Model for the activation of CB1R-positive and -negative basket cells. (PDF 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glickfeld, L., Scanziani, M. Distinct timing in the activity of cannabinoid-sensitive and cannabinoid-insensitive basket cells. Nat Neurosci 9, 807–815 (2006). https://doi.org/10.1038/nn1688

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1688

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing