Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Midline radial glia translocation and corpus callosum formation require FGF signaling

Abstract

Midline astroglia in the cerebral cortex develop earlier than other astrocytes through mechanisms that are still unknown. We show that radial glia in dorsomedial cortex retract their apical endfeet at midneurogenesis and translocate to the overlaying pia, forming the indusium griseum. These cells require the fibroblast growth factor receptor 1 (Fgfr1) gene for their precocious somal translocation to the dorsal midline, as demonstrated by inactivating the Fgfr1 gene in radial glial cells and by RNAi knockdown of Fgfr1 in vivo. Dysfunctional astroglial migration underlies the callosal dysgenesis in conditional Fgfr1 knockout mice, suggesting that precise targeting of astroglia to the cortex has unexpected roles in axon guidance. FGF signaling is sufficient to induce somal translocation of radial glial cells throughout the cortex; furthermore, the targeting of astroglia to dorsolateral cortex requires FGFr2 signaling after neurogenesis. Hence, FGFs have an important role in the transition from radial glia to astrocytes by stimulating somal translocation of radial glial cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Disruption of dorsal telencephalic commissures in glial-specific Fgfr1 mutant mice and enriched expression of FGF-related genes in anterior midline.
Figure 2: Normal corpus callosum and midline glia in mice lacking Fgfr1 in neurons.
Figure 3: Migration of astroglial cells to the indusium griseum is disrupted in glial-specific Fgfr1 mutant.
Figure 4: Midline radial glia translocation is absent in glial-specific Fgfr1 mutant embryos.
Figure 5: Cell-autonomous regulation of midline radial glia translocation by FGF signaling.
Figure 6: FGF signaling is sufficient to induce premature radial glial cell translocation in developing cortex.
Figure 7: Fgfr2 is required for astroglial targeting to the dorsolateral cortex (ac) BLBP staining in control (a), Fgfr2f/f;hGFAPCre (b) and Fgfr1;Fgfr2f/f;hGFAPCre (c) E18.5 embryos, showing normal radial glial morphology in Fgfr2 single and Fgfr1/Fgfr2 double mutant mice.

Similar content being viewed by others

References

  1. Schmechel, D.E. & Rakic, P. A Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes. Anat. Embryol. (Berl.) 156, 115–152 (1979).

    Article  CAS  Google Scholar 

  2. Pixley, S.K.R. & de Vellis, J. Transition between immature glia and mature astrocytes studied with a monoclonal antibody to vimentin. Dev. Brain Res. 15, 201–209 (1984).

    Article  Google Scholar 

  3. Mission, J.P., Takahashi, T. & Caviness, V.S., Jr. Ontogeny of radial and other astroglial cells in murine cerebral cortex. Glia 4, 138–148 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Shu, T., Puche, A.C. & Richards, L.J. Development of midline glial populations at the corticoseptal boundary. J. Neurobiol. 57, 81–94 (2003).

    Article  PubMed  Google Scholar 

  5. Silver, J., Edwards, M.A. & Levitt, P. Immunocytochemical demonstration of early appearing astroglial structures that form boundaries and pathways along axon tracts in the fetal brain. J. Comp. Neurol. 328, 415–436 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Shu, T. & Richards, L.J. Cortical axon guidance by the glial wedge during the development of the corpus callosum. J. Neurosci. 21, 2749–2758 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Silver, J. & Ogawa, M.Y. Postnatally induced formation of the corpus callosum in acallosal mice on glia-coated cellulose bridges. Science 220, 1067–1069 (1983).

    Article  CAS  PubMed  Google Scholar 

  8. Shu, T., Butz, K.G., Plachez, C., Gronostajski, R.M. & Richards, L.J. Abnormal development of forebrain midline glia and commissural projections in Nfia knock-out mice. J. Neurosci. 23, 203–212 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Kriegstein, A.R. & Gotz, M. Radial glia diversity: a matter of cell fate. Glia 43, 37–43 (2003).

    Article  PubMed  Google Scholar 

  10. Qian, X., Davis, A.A., Goderie, S.K. & Temple, S. FGF2 concentration regulates the generation of neurons and glia from multipotent cortical stem cells. Neuron 18, 81–93 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Song, M.R. & Ghosh, A. FGF2-induced chromatin remodeling regulates CNTF-mediated gene expression and astrocyte differentiation. Nat. Neurosci. 7, 229–235 (2004).

    Article  PubMed  Google Scholar 

  12. Morrow, T., Song, M.R. & Ghosh, A. Sequential specification of neurons and glia by developmentally regulated extracellular factors. Development 128, 3585–3594 (2001).

    CAS  PubMed  Google Scholar 

  13. Ornitz, D. & Itoh, N. Fibroblast growth factors. Genome Biol. 2, 3005–3012 (2001).

    Article  Google Scholar 

  14. Itoh, N. & Ornitz, D.M. Evolution of the Fgf and Fgfr gene families. Trends Genet. 20, 563–569 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Storm, E.E., Rubenstein, J.L. & Martin, G.R. Dosage of FGF8 determines whether cell survival is positively or negatively regulated in the developing forebrain. Proc. Natl. Acad. Sci. USA 100, 1757–1762 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Vaccarino, F.M. et al. Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesis. Nat. Neurosci. 2, 246–253 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Raballo, R. et al. Basic fibroblast growth factor (Fgf2) is necessary for cell proliferation and neurogenesis in the developing cerebral cortex. J. Neurosci. 20, 5012–5023 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Garel, S., Huffman, K.J. & Rubenstein, J.L.R. Molecular regionalization of the neocortex is disrupted in Fgf8 hypomorphic mutants. Development 130, 1903–1914 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Fukuchi-Shimogori, T. & Grove, E.A. Neocortex patterning by the secreted signaling molecule FGF8. Science 294, 1071–1074 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Ohkubo, Y., Chiang, C. & Rubenstein, J.L. Coordinate regulation and synergistic actions of BMP4, SHH and FGF8 in the rostral prosencephalon regulate morphogenesis of the telencephalic and optic vesicles. Neuroscience 111, 1–17 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Gregg, C. & Weiss, S. Generation of functional radial glial cells by embryonic and adult forebrain neural stem cells. J. Neurosci. 23, 11587–11601 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Yoon, K. et al. Fibroblast growth factor receptor signaling promotes radial glial identity and interacts with Notch1 signaling in telencephalic progenitors. J. Neurosci. 24, 9497–9506 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Ohkubo, Y., Uchida, A.O., Shin, D., Partanen, J. & Vaccarino, F.M. Fibroblast growth factor receptor 1 is required for the proliferation of hippocampal progenitor cells and for hippocampal growth in mouse. J. Neurosci. 24, 6057–6069 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Dode, C. et al. Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nat. Genet. 33, 463–465 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Pirvola, U. et al. FGFR1 is required for the development of the auditory sensory epithelium. Neuron 35, 671–680 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Malatesta, P. et al. Neuronal or glial progeny: regional differences in radial glia fate. Neuron 37, 751–764 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Graus-Porta, D. et al. Beta1-class integrins regulate the development of laminae and folia in the cerebral and cerebellar cortex. Neuron 31, 367–379 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Ozaki, H.S. & Wahlsten, D. Prenatal formation of the normal mouse corpus callosum: a quantitative study with carbocyanine dyes. J. Comp. Neurol. 323, 81–90 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Minowada, G. et al. Vertebrate Sprouty genes are induced by FGF signaling and can cause chondrodysplasia when overexpressed. Development 126, 4465–4475 (1999).

    CAS  PubMed  Google Scholar 

  30. Maruoka, Y. et al. Comparison of the expression of three highly related genes, FgF8, Fgf17 and Fgf18, in the mouse embryo. Mech. Dev. 74, 175–177 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Crossley, P.H. & Martin, G.R. The mouse FGF8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embyo. Development 121, 439–451 (1995).

    CAS  PubMed  Google Scholar 

  32. Shu, T., Sundaresan, V., McCarthy, M.M. & Richards, L.J. Slit2 guides both precrossing and postcrossing callosal axons at the midline in vivo. J. Neurosci. 23, 8176–8184 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Zhu, Y. et al. Ablation of NF1 function in neurons induces abnormal development of cerebral cortex and reactive gliosis in the brain. Genes Dev. 15, 859–876 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Hasegawa, H. et al. Laminar patterning in the developing neocortex by temporally coordinated fibroblast growth factor signaling. J. Neurosci. 24, 8711–8719 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Yu, K., Herr, A.B., Waksman, G. & Ornitz, D.M. Loss of fibroblast growth factor receptor 2 ligand-binding specificity in Apert syndrome. Proc. Natl. Acad. Sci. USA 97, 14536–14541 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Meyers, E.N., Lewandoski, M. & Martin, G.R. An FGF8 mutant allelic series generated by Cre-and Flp-mediated recombination. Nat. Genet. 18, 136–141 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Huffman, K.J., Garel, S. & Rubenstein, J.L. FGF8 regulates the development of intra-neocortical projections. J. Neurosci. 24, 8917–8923 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Shanmugalingam, S. et al. Ace/FGF8 is required for forebrain commissure formation and patterning of the telencephalon. Development 127, 2549–2561 (2000).

    CAS  PubMed  Google Scholar 

  40. Klambt, C., Glazer, L. & Shilo, B.Z. breathless, a Drosophila FGF receptor homolog, is essential for migration of tracheal and specific midline glial cells. Genes Dev. 6, 1668–1678 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Williams, E.J., Furness, J., Walsh, F.S. & Doherty, P. Activation of the FGF receptor underlies neurite outgrowth stimulated by L1, N-CAM, and N-Cadherin. Neuron 13, 583–594 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Webber, C.A., Hyakutake, M.T. & McFarlane, S. Fibroblast growth factors redirect retinal axons in vitro and in vivo. Dev. Biol. 263, 24–34 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Rash, B.G. & Richards, L.J. A role for cingulate pioneering axons in the development of the corpus callosum. J. Comp. Neurol. 434, 147–157 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Shin, D.M. et al. Loss of glutamatergic pyramidal neurons in frontal and temporal cortex resulting from attenuation of FGFR1 signaling is associated with spontaneous hyperactivity in mice. J. Neurosci. 24, 2247–2258 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Cheng, Y., Black, I.B. & DiCicco-Bloom, E. Hippocampal granule neuron production and population size are regulated by levels of bFGF. Eur. J. Neurosci. 15, 3–12 (2002).

    Article  PubMed  Google Scholar 

  46. Faux, C.H., Turnley, A.M., Epa, R., Cappai, R. & Bartlett, P.F. Interactions between fibroblast growth factors and Notch regulate neuronal differentiation. J. Neurosci. 21, 5587–5596 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Hebert, J.M., Lin, M., Partanen, J., Rossant, J. & McConnell, S.K. FGF signaling through FGFR1 is required for olfactory bulb morphogenesis. Development 15, 1101–1111 (2003).

    Article  Google Scholar 

  48. Zhuo, L. et al. hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo. Genesis 31, 85–94 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Chen, J.G., Rasin, M.R., Kwan, K.Y. & Sestan, N. Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex. Proc. Natl. Acad. Sci. USA 102, 17792–17797 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Schmid, R.S., Yokota, Y. & Anton, E.S. Generation and characterization of brain lipid-binding protein promoter-based transgenic mouse models for the study of radial glia. Glia 53, 345–351 (2006).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Uchida for explant preparation and valuable discussions; S.L. Ellis and J. Silbereis for technical assistance; R. Slack (University of Ottawa, Ottawa, Ontario) for the Nestin-Cre mice; J. Marth (University of California San Diego) for the SynI-Cre mice; J. Partanen (Institute of Biotechnology, University of Helsinki, Helsinki, Finland) for the FGFr1f/f mice; D. Ornitz (Washington University Medical School, Saint Louis) for the FGFr2f/f mice; K. Kwan (Yale University, New Haven) for generating pCGLH; E. Anton (University of North Carolina, Chapel Hill, North Carolina) for providing pBLBP-EGFP; and J. Miyazaki (Osaka University, Osaka, Japan) for providing pCAGGS. We are grateful to M. Tessier-Lavigne (Genentech, South San Francisco) for probes and J. Rubenstein (University of California San Francisco) for sharing data. This work was supported by the US National Institutes of Health (grants MH067715, NS35476, 5T32-MH18268, NS054273 and HD045481) and the National Alliance for Research on Schizophrenia and Depression Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flora M Vaccarino.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Lack of dorsal telencephalic commissures in Fgfr1 mutants correlates with absence of the IG. (PDF 1564 kb)

Supplementary Fig. 2

Fgfr1 mutants have specific deficits in the formation of dorsal telencephalic commissures. (PDF 706 kb)

Supplementary Fig. 3

Fgfr1 mutation does not alter the expression of neuronal factors implicated in midline axon guidance. (PDF 487 kb)

Supplementary Fig. 4

In situ hybridization and RT-PCR of axon guidance molecules in control and hGfap/Cre Fgfr1 mutant embryos. (PDF 497 kb)

Supplementary Fig. 5

Decreased expression of Fgfr1 protein after shRNA knockdown and Fgfr2 mRNA in Fgfr2f/f;hGfapCre mice. (PDF 573 kb)

Supplementary Methods (PDF 107 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, K., Ohkubo, Y., Maragnoli, M. et al. Midline radial glia translocation and corpus callosum formation require FGF signaling. Nat Neurosci 9, 787–797 (2006). https://doi.org/10.1038/nn1705

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1705

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing