Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1

Abstract

Most functional brain imaging studies use task-induced hemodynamic responses to infer underlying changes in neuronal activity. In addition to increases in cerebral blood flow and blood oxygenation level–dependent (BOLD) signals, sustained negative responses are pervasive in functional imaging. The origin of negative responses and their relationship to neural activity remain poorly understood. Through simultaneous functional magnetic resonance imaging and electrophysiological recording, we demonstrate a negative BOLD response (NBR) beyond the stimulated regions of visual cortex, associated with local decreases in neuronal activity below spontaneous activity, detected 7.15 ± 3.14 mm away from the closest positively responding region in V1. Trial-by-trial amplitude fluctuations revealed tight coupling between the NBR and neuronal activity decreases. The NBR was associated with comparable decreases in local field potentials and multiunit activity. Our findings indicate that a significant component of the NBR originates in neuronal activity decreases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BOLD response to stimulation of part of the visual field.
Figure 2: Neuronal and BOLD response to stimulation of part of the visual field.
Figure 3: Dynamics of the NBR and decreases in neuronal activity.
Figure 4: The negative BOLD response is correlated with decreases in neuronal activity.
Figure 5: Prediction of the mean time course of the BOLD response from that of the mean neuronal response and adjacent BOLD response.
Figure 6: Neuronal and BOLD response to stimulation of part of the visual field: LFP and MUA.
Figure 7: Trial-by-trial estimation of the time course of the negative BOLD response based on decreases in LFP, MUA and spiking activity.
Figure 8: Distance between the closest positively responding region and the site where decreases in neuronal activity were detected.

Similar content being viewed by others

References

  1. Raichle, M.E., Martin, W.R.W., Herscovitch, P., Mintun, M.A. & Markham, J. Brain blood-flow measured with intravenous H2(15)O. II. Implementation and validation. J. Nucl. Med. 24, 790–798 (1983).

    CAS  PubMed  Google Scholar 

  2. Ogawa, S., Lee, T.M., Kay, A.R. & Tank, D.W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA 87, 9868–9872 (1990).

    Article  CAS  Google Scholar 

  3. Kwong, K.K. et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl. Acad. Sci. USA 89, 5675–5679 (1992).

    Article  CAS  Google Scholar 

  4. Ogawa, S. et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic-resonance-imaging. Proc. Natl. Acad. Sci. USA 89, 5951–5955 (1992).

    Article  CAS  Google Scholar 

  5. Bandettini, P.A., Wong, E.C., Hinks, R.S., Tikofsky, R.S. & Hyde, J.S. Time course EPI of human brain function during task activation. Magn. Reson. Med. 25, 390–397 (1992).

    Article  CAS  Google Scholar 

  6. Mathiesen, C., Caesar, K., Akgoren, N. & Lauritzen, M. Modification of activity-dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. J. Physiol. (Lond.) 512, 555–566 (1998).

    Article  CAS  Google Scholar 

  7. Logothetis, N.K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).

    Article  CAS  Google Scholar 

  8. Smith, A.J. et al. Cerebral energetics and spiking frequency: the neurophysiological basis of fMRI. Proc. Natl. Acad. Sci. USA 99, 10765–10770 (2002).

    Article  CAS  Google Scholar 

  9. Sheth, S. et al. Evaluation of coupling between optical intrinsic signals and neuronal activity in rat somatosensory cortex. Neuroimage 19, 884–894 (2003).

    Article  Google Scholar 

  10. Thompson, J.K., Peterson, M.R. & Freeman, R.D. Single-neuron activity and tissue oxygenation in the cerebral cortex. Science 299, 1070–1072 (2003).

    Article  CAS  Google Scholar 

  11. Devor, A. et al. Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex. Neuron 39, 353–359 (2003).

    Article  CAS  Google Scholar 

  12. Kayser, C., Kim, M., Ugurbil, K., Kim, D.S. & Konig, P. A comparison of hemodynamic and neural responses in cat visual cortex using complex stimuli. Cereb. Cortex 14, 881–891 (2004).

    Article  Google Scholar 

  13. Niessing, J. et al. Hemodynamic signals correlate tightly with synchronized gamma oscillations. Science 309, 948–951 (2005).

    Article  CAS  Google Scholar 

  14. Mukamel, R. et al. Coupling between neuronal firing, field potentials, and fMR1 in human auditory cortex. Science 309, 951–954 (2005).

    Article  CAS  Google Scholar 

  15. Shulman, G.L. et al. Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J. Cogn. Neurosci. 9, 648–663 (1997).

    Article  CAS  Google Scholar 

  16. Shmuel, A. et al. Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron 36, 1195–1210 (2002).

    Article  CAS  Google Scholar 

  17. Logothetis, N.K. The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Phil. Trans. R. Soc. Lond. B 357, 1003–1037 (2002).

    Article  Google Scholar 

  18. Tootell, R.B.H. et al. The retinotopy of visual spatial attention. Neuron 21, 1409–1422 (1998).

    Article  CAS  Google Scholar 

  19. Saad, Z.S., Ropella, K.M., Cox, R.W. & Deyoe, E.A. Analysis and use of fMRI response delays. Hum. Brain Mapp. 13, 74–93 (2001).

    Article  CAS  Google Scholar 

  20. Harel, N., Lee, S.P., Nagaoka, T., Kim, D.S. & Kim, S.G. Origin of negative blood oxygenation level-dependent fMRI signals. J. Cereb. Blood Flow Metab. 22, 908–917 (2002).

    Article  Google Scholar 

  21. Kannurpatti, S.S. & Biswal, B.B. Negative functional response to sensory stimulation and its origins. J. Cereb. Blood Flow Metab. 24, 703–712 (2004).

    Article  Google Scholar 

  22. Devor, A. et al. Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity. Proc. Natl. Acad. Sci. USA 102, 3822–3827 (2005).

    Article  CAS  Google Scholar 

  23. Allison, J.D., Meader, K.J., Loring, D.W., Figueroa, R.E. & Wright, J.C. Functional MRI cerebral activation and deactivation during finger movement. Neurology 54, 135–142 (2000).

    Article  CAS  Google Scholar 

  24. Raichle, M.E. et al. A default mode of brain function. Proc. Natl. Acad. Sci. USA 98, 676–682 (2001).

    Article  CAS  Google Scholar 

  25. Gusnard, D.A. & Raichle, M.E. Searching for a baseline: functional imaging and the resting human brain. Nat. Rev. Neurosci. 2, 685–694 (2001).

    Article  CAS  Google Scholar 

  26. Smith, A.T., Williams, A.L. & Singh, K.D. Negative BOLD in the visual cortex: evidence against blood stealing. Hum. Brain Mapp. 21, 213–220 (2004).

    Article  Google Scholar 

  27. Gold, L. & Lauritzen, M. Neuronal deactivation explains decreased cerebellar blood flow in response to focal cerebral ischemia or suppressed neocortical function. Proc. Natl. Acad. Sci. USA 99, 7699–7704 (2002).

    Article  CAS  Google Scholar 

  28. Stefanovic, B., Warnking, J.M. & Pike, G.B. Hemodynamic and metabolic responses to neuronal inhibition. Neuroimage 22, 771–778 (2004).

    Article  Google Scholar 

  29. Gilbert, C.D. & Wiesel, T.N. Morphology and intra-cortical projections of functionally characterized neurons in the cat visual cortex. Nature 280, 120–125 (1979).

    Article  CAS  Google Scholar 

  30. Rockland, K.S. & Lund, J.S. Intrinsic laminar lattice connections in primate visual cortex. J. Comp. Neurol. 216, 303–318 (1983).

    Article  CAS  Google Scholar 

  31. Pfeuffer, J., Merkle, H., Beyerlein, M., Steudel, T. & Logothetis, N.K. Anatomical and functional MR imaging in the macaque monkey using a vertical large-bore 7 Tesla setup. Magn. Reson. Imaging 22, 1343–1359 (2004).

    Article  Google Scholar 

  32. Mulligan, S.J. & MacVicar, B.A. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431, 195–199 (2004).

    Article  CAS  Google Scholar 

  33. Cauli, B. et al. Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J. Neurosci. 24, 8940–8949 (2004).

    Article  CAS  Google Scholar 

  34. Hoge, R.D. et al. Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model. Magn. Reson. Med. 42, 849–863 (1999).

    Article  CAS  Google Scholar 

  35. Buxton, R.B., Uludag, K., Dubowitz, D.J. & Liu, T.T. Modeling the hemodynamic response to brain activation. Neuroimage 23, S220–S233 (2004).

    Article  Google Scholar 

  36. Lauritzen, M. Reading vascular changes in brain imaging: is dendritic calcium the key? Nat. Rev. Neurosci. 6, 77–85 (2005).

    Article  CAS  Google Scholar 

  37. Malonek, D. & Grinvald, A. Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science 272, 551–554 (1996).

    Article  CAS  Google Scholar 

  38. Menon, R.S. et al. Bold based functional MRI at 4-tesla includes a capillary bed contribution: echo-planar imaging correlates with previous optical imaging using intrinsic signals. Magn. Reson. Med. 33, 453–459 (1995).

    Article  CAS  Google Scholar 

  39. Logothetis, N.K., Guggenberger, H., Peled, S. & Pauls, J. Functional imaging of the monkey brain. Nat. Neurosci. 2, 555–562 (1999).

    Article  CAS  Google Scholar 

  40. Uludag, K. et al. Coupling of cerebral blood flow and oxygen consumption during physiological activation and deactivation measured with fMRI. Neuroimage 23, 148–155 (2004).

    Article  Google Scholar 

  41. Iadecola, C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat. Rev. Neurosci. 5, 347–360 (2004).

    Article  CAS  Google Scholar 

  42. Duvernoy, H.M., Delon, S. & Vannson, J.L. Cortical blood vessels of the human-brain. Brain Res. Bull. 7, 519–579 (1981).

    Article  CAS  Google Scholar 

  43. Logothetis, N.K. The underpinnings of the BOLD functional magnetic resonance imaging signal. J. Neurosci. 23, 3963–3971 (2003).

    Article  CAS  Google Scholar 

  44. Mandeville, J.B. et al. Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation. Magn. Reson. Med. 39, 615–624 (1998).

    Article  CAS  Google Scholar 

  45. Buxton, R.B., Wong, E.C. & Frank, L.R. Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn. Reson. Med. 39, 855–864 (1998).

    Article  CAS  Google Scholar 

  46. Lu, H., Golay, X., Pekar, J.J. & van Zijl, P.C.M. Sustained poststimulus elevation in cerebral oxygen utilization after vascular recovery. J. Cereb. Blood Flow Metab. 24, 764–770 (2004).

    Article  Google Scholar 

  47. Brewer, A.A., Press, W.A., Logothetis, N.K. & Wandell, B.A. Visual areas in macaque cortex measured using functional magnetic resonance imaging. J. Neurosci. 22, 10416–10426 (2002).

    Article  CAS  Google Scholar 

  48. Bandettini, P.A., Jesmanowicz, A., Wong, E.C. & Hyde, J.S. Processing strategies for time-course data sets in functional MRI of the human brain. Magn. Reson. Med. 30, 161–173 (1993).

    Article  CAS  Google Scholar 

  49. Boynton, G.M., Engel, S.A., Glover, G.H. & Heeger, D.J. Linear systems analysis of functional magnetic resonance imaging in human V1. J. Neurosci. 16, 4207–4221 (1996).

    Article  CAS  Google Scholar 

  50. Forman, S.D. et al. Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn. Reson. Med. 33, 636–647 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Bartels, A. Ghazanfar, K. Hoffman, A. Ishai, C. Kayser, G. Rainer, S. Smirnakis, L. Sugrue and K. Uludag for comments on a previous version of the manuscript; D. Blaurock for English editing; and S. Weber for fine-mechanic work. This study was supported by a long-term fellowship from the European Molecular Biology Organization awarded to A.S., and by the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amir Shmuel or Nikos K Logothetis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Neuronal response to stimulation of part of the visual field. (PDF 44 kb)

Supplementary Fig. 2

BOLD and neuronal response to stimulation of part of the visual field from 2 experiments with low-amplitude NBR and low-amplitude increases in neuronal activity. (PDF 126 kb)

Supplementary Fig. 3

The negative BOLD response is correlated with decreases in neuronal activity. (PDF 139 kb)

Supplementary Fig. 4

Region of interest adjacent to the NBR in V1. (PDF 22 kb)

Supplementary Fig. 5

Ratio of BOLD response to neuronal response. (PDF 45 kb)

Supplementary Discussion (PDF 74 kb)

Supplementary Methods (PDF 104 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shmuel, A., Augath, M., Oeltermann, A. et al. Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 9, 569–577 (2006). https://doi.org/10.1038/nn1675

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1675

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing