Supplementary Fig. 5. Parabrachial nucleus lesions do not block food entrainment. Camera lucida drawings of ibotenic acid-induced lesions are shown through three levels of the parabrachial nucleus (a; –8.80, –9.30, and –9.70 mm caudal to bregma). During restricted feeding (gray traces), parabrachial nucleus-lesioned animals showed a strong preprandial rise in locomotor activity (b) and body temperature (c) compared to baseline ad lib feeding (black traces). In addition, the locomotor activity (d) and body temperature (e) rhythms realigned with the daily meal. In contrast to other experiments described in this study, parabrachial nucleus-lesioned animals were not food deprived following food restriction. Therefore, the daily meal may have partially masked the underlying rhythms shown in panels (d) and (e). The hourly mean ± S.E.M. is shown for each trace. The light-dark cycle is indicated at the top by the white-black bars, and food availability during food restriction is shown by the vertical gray bars. Data are plotted twice to emphasize daily rhythmicity. Parabrachial subnuclei: c, central lateral subnucleus; d, dorsal lateral subnucleus; el, external lateral subnucleus; exm, external medial subnucleus; i, internal lateral subnucleus; KF, Kolliker-Fuse nucleus; m, medial subnucleus; s, superior lateral subnucleus; v, ventral lateral subnucleus. 4n, trochlear nerve; Bar, Barrington’s nucleus; CG, central gray matter; CnF, cuneiform nucleus; DLL, dorsal nucleus of the lateral lemniscus; LDTg, laterodorsal tegmental nucleus; II, lateral lemniscus; Me5, mesencephalic trigeminal nucleus; Pr5, principal sensory trigeminal nucleus; scp, superior cerebellar peduncle; vsc, ventral spinocerebellar tract. Scale Bar = 0.50 mm.