Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ghrelin controls hippocampal spine synapse density and memory performance

Abstract

The gut hormone and neuropeptide ghrelin affects energy balance and growth hormone release through hypothalamic action that involves synaptic plasticity in the melanocortin system. Ghrelin binding is also present in other brain areas, including the telencephalon, where its function remains elusive. Here we report that circulating ghrelin enters the hippocampus and binds to neurons of the hippocampal formation, where it promotes dendritic spine synapse formation and generation of long-term potentiation. These ghrelin-induced synaptic changes are paralleled by enhanced spatial learning and memory. Targeted disruption of the gene that encodes ghrelin resulted in decreased numbers of spine synapses in the CA1 region and impaired performance of mice in behavioral memory testing, both of which were rapidly reversed by ghrelin administration. Our observations reveal an endogenous function of ghrelin that links metabolic control with higher brain functions and suggest novel therapeutic strategies to enhance learning and memory processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ghrelin binding in the hippocampus.
Figure 2: Peripherally administered ghrelin enters the hippocampus.
Figure 3: Effect of ghrelin on hippocampal spine synapse density.
Figure 4: Ghrelin promotes LTP generation.
Figure 5: Effects of ghrelin treatment on learning and memory performance.
Figure 6: Ghrelin's effect on memory performance of Ghr−/− mice.

Similar content being viewed by others

References

  1. Kojima, M., Hosoda, H., Date, Y., Nakazato, M. & Kangawa, K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402, 656–660 (1999).

    Article  CAS  Google Scholar 

  2. Tschop, M., Smiley, D.L. & Heiman, M.L. Ghrelin induces adiposity in rodents. Nature 407, 908–913 (2000).

    Article  CAS  Google Scholar 

  3. van der Lely, A.J., Tschop, M., Heiman, M.L. & Ghigo, E. Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin. Endocr. Rev. 25, 426–457 (2004).

    Article  CAS  Google Scholar 

  4. Horvath, T.L., Castañeda, T., Tang-Christensen, M., Pagotto, U. & Tschop, M.H. Ghrelin as a potential anti-obesity target. Curr. Pharm. Des. 9, 1383–1395 (2003).

    Article  CAS  Google Scholar 

  5. Kojima, M. & Kangawa, K. Ghrelin: structure and function. Physiol. Rev. 85, 495–522 (2005).

    Article  CAS  Google Scholar 

  6. Guan, X.M. et al. Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain Res. Mol. Brain Res. 48, 23–29 (1997).

    Article  CAS  Google Scholar 

  7. Mitchell, V. et al. Comparative distribution of mRNA encoding the growth hormone secretagogue-receptor (GHS-R) in Microcebus murinus (Primate, lemurian) and rat forebrain and pituitary. J. Comp. Neurol. 429, 469–489 (2001).

    Article  CAS  Google Scholar 

  8. Cowley, M.A. et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 37, 649–661 (2003).

    Article  CAS  Google Scholar 

  9. Pinto, S. et al. Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science 304, 110–115 (2004).

    Article  CAS  Google Scholar 

  10. Banks, W.A., Tschop, M., Robinson, S.M. & Heiman, M.L. Extent and direction of ghrelin transport across the blood-brain barrier is determined by its unique primary structure. J. Pharmacol. Exp. Ther. 302, 822–827 (2002).

    Article  CAS  Google Scholar 

  11. Wortley, K.E. et al. Absence of ghrelin protects against early-onset obesity. J. Clin. Invest. 115, 3573–3578 (2005).

    Article  CAS  Google Scholar 

  12. Seyler, D.E. et al. Effect of growth hormone secretagogue LY444711 on IGF-1, growth hormone, and cortisol levels in beagle dogs after one and seven daily oral doses. Drug Dev. Res. 49, 260–265 (2000).

    Article  CAS  Google Scholar 

  13. Sarter, M., Bodewitz, G. & Stephens, D.N. Attenuation of scopolamine-induced impairment of spontaneous alteration behaviour by antagonist but not inverse agonist and agonist beta-carbolines. Psychopharmacology (Berl.) 94, 491–495 (1988).

    Article  CAS  Google Scholar 

  14. Ragozzino, M.E., Parker, M.E. & Gold, P.E. Spontaneous alternation and inhibitory avoidance impairments with morphine injections into the medial septum. Attenuation by glucose administration. Brain Res. 597, 241–249 (1992).

    Article  CAS  Google Scholar 

  15. Ragozzino, M.E., Wenk, G.L. & Gold, P.E. Glucose attenuates a morphine-induced decrease in hippocampal acetylcholine output: an in vivo microdialysis study in rats. Brain Res. 655, 77–82 (1994).

    Article  CAS  Google Scholar 

  16. McNay, E.C., Fries, T.M. & Gold, P.E. Decreases in rat extracellular hippocampal glucose concentration associated with cognitive demand during a spatial task. Proc. Natl. Acad. Sci. USA 97, 2881–2885 (2000).

    Article  CAS  Google Scholar 

  17. McNay, E.C., McCarty, R.C. & Gold, P.E. Fluctuations in brain glucose concentration during behavioral testing: dissociations between brain areas and between brain and blood. Neurobiol. Learn. Mem. 75, 325–337 (2001).

    Article  CAS  Google Scholar 

  18. Bostock, E., Gallagher, M. & King, R.A. Effects of opioid microinjections into the medial septal area on spatial memory in rats. Behav. Neurosci. 102, 643–652 (1988).

    Article  CAS  Google Scholar 

  19. Ragozzino, M.E. & Gold, P.E. Glucose injections into the medial septum reverse the effects of intraseptal morphine infusions on hippocampal acetylcholine output and memory. Neuroscience 68, 981–988 (1995).

    Article  CAS  Google Scholar 

  20. Ragozzino, M.E., Hellems, K., Lennartz, R.C. & Gold, P.E. Pyruvate infusions into the septal area attenuate spontaneous alternation impairments induced by intraseptal morphine injections. Behav. Neurosci. 109, 1074–1080 (1995).

    Article  CAS  Google Scholar 

  21. Wan, R.Q., Givens, B.S. & Olton, D.S. Opioid modulation of working memory: intraseptal, but not intraamygdaloid, infusions of beta-endorphin impair performance in spatial alternation. Neurobiol. Learn. Mem. 63, 74–86 (1995).

    Article  CAS  Google Scholar 

  22. McNay, E.C. & Gold, P.E. Memory modulation across neural systems: intra-amygdala glucose reverses deficits caused by intraseptal morphine on a spatial task but not on an aversive task. J. Neurosci. 18, 3853–3858 (1998).

    Article  CAS  Google Scholar 

  23. Talley, C.P., Arankowsky-Sandoval, G., McCarty, R. & Gold, P.E. Attenuation of morphine-induced behavioral changes in rodents by D- and L-glucose. Neurobiol. Learn. Mem. 71, 62–79 (1999).

    Article  CAS  Google Scholar 

  24. McNay, E.C. & Gold, P.E. Age-related differences in hippocampal extracellular fluid glucose concentration during behavioral testing and following systemic glucose administration. J. Gerontol. A Biol. Sci. Med. Sci. 56, B66–B71 (2001).

    Article  CAS  Google Scholar 

  25. Morley, J.E. et al. Beta-amyloid precursor polypeptide in SAMP8 mice affects learning and memory. Peptides 21, 1761–1767 (2000).

    Article  CAS  Google Scholar 

  26. Myhrer, T. Exploratory behavior and reaction to novelty in rats with hippocampal perforant path systems disrupted. Behav. Neurosci. 102, 356–362 (1988).

    Article  CAS  Google Scholar 

  27. Reed, J.M. & Squire, L.R. Impaired recognition memory in patients with lesions limited to the hippocampal formation. Behav. Neurosci. 111, 667–675 (1997).

    Article  CAS  Google Scholar 

  28. van der Lely, A.J., Tschop, M., Heiman, M.L. & Ghigo, E. Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin. Endocr. Rev. 25, 426–457 (2004).

    Article  CAS  Google Scholar 

  29. Cummings, D.E. et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50, 1714–1719 (2001).

    Article  CAS  Google Scholar 

  30. Horvath, T.L., Diano, S., Sotonyi, P., Heiman, M. & Tschop, M. Minireview: ghrelin and the regulation of energy balance–a hypothalamic perspective. Endocrinology 142, 4163–4169 (2001).

    Article  CAS  Google Scholar 

  31. Grove, K.L. & Cowley, M.A. Is ghrelin a signal for the development of metabolic systems? J. Clin. Invest. 115, 3393–3397 (2005).

    Article  CAS  Google Scholar 

  32. Burgess, N., Maguire, E.A. & O'Keefe, J. The human hippocampus and spatial and episodic memory. Neuron 35, 625–641 (2002).

    Article  CAS  Google Scholar 

  33. Li, C. et al. Estrogen alters hippocampal dendritic spine shape and enhances synaptic protein immunoreactivity and spatial memory in female mice. Proc. Natl. Acad. Sci. USA 101, 2185–2190 (2004).

    Article  CAS  Google Scholar 

  34. Zigman, J.M. et al. Mice lacking ghrelin receptors resist the development of diet-induced obesity. J. Clin. Invest. 115, 3564–3572 (2005).

    Article  CAS  Google Scholar 

  35. Wu, A., Molteni, R., Ying, Z. & Gomez-Pinilla, F. A saturated-fat diet aggravates the outcome of traumatic brain injury on hippocampal plasticity and cognitive function by reducing brain-derived neurotrophic factor. Neuroscience 119, 365–375 (2003).

    Article  CAS  Google Scholar 

  36. Rigamonti, A.E. et al. Plasma ghrelin concentrations in elderly subjects: comparison with anorexic and obese patients. J. Endocrinol. 175, R1–R5 (2002).

    Article  CAS  Google Scholar 

  37. Tschop, M. et al. Circulating ghrelin levels are decreased in human obesity. Diabetes 50, 707–709 (2001).

    Article  CAS  Google Scholar 

  38. Gustafson, D., Rothenberg, E., Blennow, K., Steen, B. & Skoog, I. An 18-year follow-up of overweight and risk of Alzheimer disease. Arch. Intern. Med. 163, 1524–1528 (2003).

    Article  Google Scholar 

  39. Wortley, K.E. et al. Genetic deletion of ghrelin does not decrease food intake but influences metabolic fuel preference. Proc. Natl. Acad. Sci. USA 101, 8227–8232 (2004).

    Article  CAS  Google Scholar 

  40. Valenzuela, D.M. et al. High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat. Biotechnol. 21, 652–659 (2003).

    Article  CAS  Google Scholar 

  41. Glowinski, J. & Iversen, L.L. Regional studies of catecholamines in the rat brain. I. The disposition of [3H]norepinephrine, [3H]dopamine and [3H]dopa in various regions of the brain. J. Neurochem. 13, 655–669 (1966).

    Article  CAS  Google Scholar 

  42. Thio, L.L., Wong, M. & Yamada, K.A. Ketone bodies do not directly alter excitatory or inhibitory hippocampal synaptic transmission. Neurology 54, 325–331 (2000).

    Article  CAS  Google Scholar 

  43. Farr, S.A., Banks, W.A., La Scola, M.E., Flood, J.F. & Morley, J.E. Permanent and temporary inactivation of the hippocampus impairs T-maze footshock avoidance acquisition and retention. Brain Res. 872, 242–249 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Shanabrough for technical assistance and editing of the manuscript and E. Borok for the electron microscopic analyses. This work was supported by grants from the US National Institutes of Health (DK60711, DK61619, NS40525, AG22880, DK70039, NS41725, DK7386, DK70039 and AA12743) and a VA Merit Review grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamas L Horvath.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Illustration of unbiased spine synapse quantification on electron micrographs. (PDF 484 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diano, S., Farr, S., Benoit, S. et al. Ghrelin controls hippocampal spine synapse density and memory performance. Nat Neurosci 9, 381–388 (2006). https://doi.org/10.1038/nn1656

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1656

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing